\(F(2n+1,2n) = \begin{pmatrix}
F(n,n)& F(n+1,n) \\
F(n+1,n) & F(n,n)\end{pmatrix} \)
其中\(F(n,n)由n*n个F(1,1)组成\)
\(F(2n,2n-1) = \begin{pmatrix}
F(n,n-1)& F(n,n) \\
F(n,n) & F(n,n-1)\end{pmatrix} \) 构造出其中一个F(3,2) \(F(2n+1,2n-1) = \begin{pmatrix}
F(n,n-1)& F(n+1,n) \\
F(n+1,n) & F(n,n-1)\end{pmatrix} \)
构造F(7,5)如下 \(F(2n,2m+1) = \begin{pmatrix}F(n,m)& F(n,m+1) \\F(n,m+1) & F(n,m)\end{pmatrix}\)
\(F(2n+1,2m+1) = \begin{pmatrix}F(n,m)& F(n+1,m+1) \\F(n+1,m+1) & F(n,m)\end{pmatrix}\)
\(F(2n+1,2m) = \begin{pmatrix}F(n,m)& F(n+1,m) \\F(n+1,m) & F(n,m)\end{pmatrix}\)
故可以通过递归运算求出任意\(F(k_1,k_2)\)
页:
1
[2]