找回密码
 欢迎注册
查看: 27580|回复: 9

[求助] 形如$ax^2+bx+c$的完全平方数

[复制链接]
发表于 2010-1-2 23:02:26 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设$f(x)=5x^2+14x+1$,定义域为正整数。 把使得$f(x)$为完全平方数的$x$排成一列: 2, 5, 21, 42, 152, 296, 1050, 2037, 7205, 13970, ...... 那么相邻两数之比有两个极限$k_1$和$k_2$:$k_1=1.9388$,$k_2=3.5354$ 若设$f(x)=ax^2+bx+c$,且具有上述特点。 问: $a$、$b$、$c$要满足什么条件? $k_1$和$k_2$与$a$、$b$、$c$有什么关系? 有没有$k_1=k_2$的情况?($x=1,2,3,4,5,...->k_1=k_2=1$这种情况除外)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-3 07:43:07 | 显示全部楼层
查看Pell方程相关内容
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-3 09:39:57 | 显示全部楼层
不说复杂的,比如f(n)=n^2,即a=1,b=0,c=0,就是k1=k2的情况,很简单啊。 还有,比如当a为完全平方数,b=0的时候,无解或最多一组解,无法计算k1和k2。 例如:f(n)=4n^2+3无解,f(n)=4n^2+5有一解(n=1)。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 08:50:58 | 显示全部楼层
点标签: Pell方程,可以找到一篇"奇妙的平方数拆分组合(内含Pell方程链接)", 通过这个可以找到一个求解二次丢番图方程的网页: http://www.alpertron.com.ar/QUAD.HTM 可以求出 $5x^2-y^2+14x+1=0$的通解为 $(x_0=0,y_0=-1)$或$(x_0=0,y_0=1)$或$(x_0=-3,y_0=-2)$或$(x_0=-3,y_0=2)$或$(x_0=-4,y_0=-5)$或$(x_0=-4,y_0=5)$或$(x_0=2,y_0=-7)$或$(x_0=2,y_0=7)$ 然后使用递推式 ${(x_{n+1}=-9x_n-4y_n-14),(y_{n+1}=-20x_n-9y_n-28):}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 12:59:05 | 显示全部楼层
我猜KeyTo9_Fans是搜了我的ID,找到了http://topic.csdn.net/u/20090202 ... 7-431713af0289.html,然后想推广解决。 是否?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 16:38:45 | 显示全部楼层
本帖最后由 wayne 于 2010-1-4 22:16 编辑 可以这么变: $4a*(ax^2+bx+c)=4ay^2$ 即 $(2ax+b)^2-4ay^2=b^2-4ac$ 而Pell方程$X^2-D y^2=n$可以比较容易得出通解 再在通解中找出满足2ax+b=X的情况即可。。。 $(5x+7)^2-5y^2=44$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-1-4 18:16:54 | 显示全部楼层
我猜KeyTo9_Fans是搜了我的ID,找到了http://topic.csdn.net/u/20090202 ... 7-431713af0289.html,然后想推广解决。 是否? medie2005 发表于 2010-1-4 12:59
你差点把我吓坏了! 原题来自某次在线数学竞赛,竞赛在2月4日18时开始,你竟然在2月2日20时就把原题发出来了! 参见…… http://tieba.baidu.com/f?kz=320042460 ……第三题。 仔细一看才发现原来是年份差了1...... 差点没把我吓坏。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 19:08:56 | 显示全部楼层
得到的x的递推式子是 $x_{n+5}=x_{n+4}+7 x_{n+3}-7 x_{n+2}-x_{n+1}+x_{n}$ 前50个是: {2, 5, 21, 42, 152, 296, 1050, 2037, 7205, 13970, 49392, 95760, 338546, 656357, 2320437, 4498746, 15904520, 30834872, 109011210, 211345365, 747173957, 1448582690, 5121206496, 9928733472, 35101271522, 68052551621, 240587694165, 466439127882, 1649012587640, 3197021343560, 11302500419322, 21912710277045, 77468490347621, 150191950595762, 530976932014032, 1029430943893296, 3639370033750610, 7055824656657317, 24944613304240245, 48361341652707930, 170972923095931112, 331473566912298200, 1171865848367277546, 2271953626733379477, 8032088015475011717, 15572201820221358146, 55052750259957804480, 106733459114816127552, 377337163804229619650, 731562011983491534725}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 19:30:09 | 显示全部楼层
找到了一个更简单的递推式子: $x_{n+4}=7x_{n+2}-x_{n}+7$

评分

参与人数 1鲜花 +1 收起 理由
KeyTo9_Fans + 1 我怎么就没找到呢

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-1-4 21:55:50 | 显示全部楼层
发现你这题蛮有意思的,相间的两项(即偶数项或奇数项)之比只与特征方程有关,为 $\frac{1}{2} (7+3 \sqrt{5})$ 而相邻的两项之比则还与基础解,即递推公式的初始值有关。 $k_1=\frac{1}{22} (27+7 \sqrt{5})=1.9387489019317512670$ $k_2=\frac{1}{11}(21+8 \sqrt{5})=3.5353221654543925065$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 01:08 , Processed in 0.036115 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表