找回密码
 欢迎注册
查看: 25214|回复: 7

[讨论] 关于多项式方程的一个根轨迹问题

[复制链接]
发表于 2010-7-8 12:53:43 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
我们讨论一下实系数一元四次方程的根随参数变化而变化的问题: 方程: $f(X)=(n^2-2*n+1)*X^4+(2-2*n)*S*X^3+(S^2-n^2+4*n-4)*X^2+(2*n-4)*S*X-S^2-1=0$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-8 13:01:43 | 显示全部楼层
由图可知,根轨迹图有两个渐近方向 . 仔细分析一下,还是很容易求出渐近线的,有3个: X=S/(n-1) X=1 X=-1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-8 13:06:09 | 显示全部楼层
解决了渐近线问题,让我们来看看实根的锐变情况: 图形给的是n=3的情况。 可以看出,在S大致等于6的地方,四个实根蜕变为两个实根, 通过代数计算得知,这个点是 S= 5.9882545628582426682347471877987785296590048943
当S=5.9882545628582426682347471877987785296590048943时,方程的四个根为 {-0.8942978495636653478796213, 3.401729513865848324645751, 1.740411449278029845734309 - 1.*10^-24 I, 1.740411449278029845734309 + 1.*10^-24 I} 当S=5.9882545628582426682347471877987785296590048944时,方程的四个根为 {-0.8942978495636653478796213, 1.740411449278029845734303, 1.740411449278029845734315, 3.401729513865848324645751}
以前通过数值计算,得到的S=6.0043029605431965656237025541486不对,应该是精度不够导致。 另外,应该可以根据 Sturm's theorem 从理论上分析算出这个点来的,不过我具体还没算,有时间再贴出来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-8 14:40:30 | 显示全部楼层
5.9882545628582426682347471877987785296590048943就对了,对应于hujunhua那个图中n=3时切线对应的s值为S/3=1.996084854286080889411582396
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-8 15:54:02 | 显示全部楼层
4# mathe 把上面的值输入wolframalpha,却得不到准确值,。。。 根据Sturm's theorem ,算出来,n=3时,s值为: 方程$-289-421 S^2-234 S^4-29 S^6+S^8=0$的根: 5.9882545628582426682347471877987785296590048943044
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-8 16:22:51 | 显示全部楼层
一般情况:根个数发生变化的S值为 $(20 - 40 n + 28 n^2 - 8 n^3 + n^4)^2 + (160 - 480 n + 516 n^2 - 232 n^3 + 20 n^4 + 16 n^5 - 3 n^6) S^2 + (-9 + 18 n - 15 n^2 + 6 n^3 + 2 n^4) S^4 $$+ (-10 + 10 n + n^2) S^6 - S^8=0$的最大正根

评分

参与人数 1金币 +2 贡献 +2 收起 理由
数学星空 + 2 + 2 结果很好,不知如何得到的?

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2010-7-9 09:41:46 | 显示全部楼层
6# wayne ,Sturm's theorem
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-9 19:47:23 | 显示全部楼层
一般的对于四次方程(含参数) \(a_0+a_1x+a_2x^2+a_3x^3+a_4x^4=0\) 实根数发生变化的条件: \(-192a_4^2a_0^2a_3a_1-6a_4a_0a_3^2a_1^2+144a_4a_0^2a_2a_3^2+144a_4^2a_0a_2a_1^2+18a_4a_3a_1^3a_2+a_2^2a_3^2a_1^2-4a_2^3a_3^2a_0-27a_4^2a_1^4+256a_4^3a_0^3-128a_4^2a_0^2a_2^2-4a_3^3a_1^3+16a_2^4a_4a_0-4a_2^3a_4a_1^2-27a_3^4a_0^2-80a_4a_3a_1a_2^2a_0+18a_3^3a_1a_2a_0=0\) 对照1#的方程有 \(a_0 = -S^2-1, a_1 = (2n-4)S, a_2 = S^2-n^2+4n-4, a_3 = 2(1-n)S, a_4 = (n-1)^2\) 代入整理得: \(S^8+(-10n+10-n^2)S^6+(9-6n^3-2n^4-18n+15n^2)S^4+(232n^3-516n^2+480n-16n^5-160+3n^6-20n^4)S^2-400+1600n+2560n^3-2720n^2-120n^6+528n^5-1464n^4-n^8+16n^7=0\) 即7#的结果

评分

参与人数 1鲜花 +6 收起 理由
wayne + 6

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 13:43 , Processed in 0.027297 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表