一个数列的通项公式
在http://topic.csdn.net/u/20090115/17/1f9acfcb-5a7e-4ee0-b540-ca00a4ac2c82.html,网友fallening 向mathe提问:f(n)=f(n-1)+f(n-3)
f(1)=1
f(2)=1
f(3)=1
f(n)=?
Fibonacci Numbers 公式我是会推导的,这个题目似乎比较麻烦。 按照http://www.research.att.com/~njas/sequences/A000930 的解释,
a(n) = floor( d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 ( c=1.465571231876768... and d= 0.611491991950812...) - Benoit Cloitre (benoit7848c(AT)orange.fr), Nov 30 2002 原帖由 northwolves 于 2009-1-19 19:00 发表 http://bbs.emath.ac.cn/images/common/back.gif
按照http://www.research.att.com/~njas/sequences/A000930 的解释,
a(n) = floor( d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 ( c=1.465571231876768 ...
c is the real root of x^3-x^2-1=0
$c=root3(4*(1+sqrt(27/31))/837)+root3(4*(1-sqrt(27/31))/837)+1/3
d is the real root of 31*x^3-31*x^2+9*x-1
$d=root3(29/54+sqrt(837)/54)+root3(29/54-sqrt(837)/54)+1/3$ 最终结果:$a(n)=|__(root3(29/54+sqrt(837)/54)+root3(29/54-sqrt(837)/54)+1/3)*(root3(4*(1+sqrt(27/31))/837)+root3(4*(1-sqrt(27/31))/837)+1/3)^(n-1)+1/2__|
这里有个问题:a(n) = floor( d*c^n + 1/2)是如何推导出来的?Google 没有搜到相关资料 x^3-x^2-1=0的其他两个根为c*(cos(2*pi/3)+i*sin(2*pi/3))和c*(cos(4*pi/3)+i*sin(4*pi/3)).
$a=k_{1}*c^{n-1}+k_{2}*c^{n-1}*(cos((2n-2)*pi/3)+i*sin((2n-2)*pi/3))+k_{3}*c^{n-1}*(cos((4n-4)*pi/3)+i*sin((4n-4)*pi/3))$
由a=a=a=1,解得k_{1},k_{2},k_{3}. 1=k_{1}+k_{2}+k_{3}
1=k_{1}*c^{2-1}+k_{2}*c^{2-1}*cos(2*pi/3)+k_{3}*c^{2-1}*cos(4*pi/3)
1=k_{1}*c^{3-1}+k_{2}*c^{3-1}*cos(4*pi/3)+k_{3}*c^{3-1}*cos(8*pi/3) 明白了,谢谢medie2005 强大啊,我想说是手工解出来的吗?:) \sum _{{\it \_R}={\it RootOf} \left( -1+{\it \_Z}+{{\it \_Z}}^{3}
\right) }{\frac { \left( {{\it \_R}}^{-1} \right) ^{n}}{1+3\,{{\it
\_R}}^{2}}} 这个题目不算太难吧
页:
[1]
2