wayne 发表于 2018-1-21 11:29:09

hujunhua 发表于 2018-1-21 10:56
math的评价总是很恰当。连分式本是对原初母函数无穷多项的整体逼近,自然要高效些。运气好的话,甚至可得有 ...

我试着把此题推广到了任意的负整数次幂的黎曼zeta函数了【试过$-3,-4,-5$】,发现仍然很有规律,有$m+1/2$,而且分子都是正数,只是规律尚待揭秘,有没有兴趣来一次比赛,看谁捷足先登,嘿嘿,(方法还是老方法,就是待定系数求级数展开),不过我下午要去趟医院了。

hujunhua 发表于 2018-1-21 12:13:32

@wayne 我计算、推导时要用mathematica10进行简单的多项式计算,但只在办公室电脑上装了m10。家里的老旧本本上好像也装了,但跑得慢,很久没开机了。俺周末不上办公室,本来准备下周来搞伯努利数的母函数连分式的,但也想看看先露的苗头,这两天有没人揪住,结果还真被你揪出来了。不能不赞你一下。

hujunhua 发表于 2018-1-21 12:33:24

-3的不该是m+1/2, 应该是个2次式吧

wayne 发表于 2018-1-21 13:07:04

先发出来,半手工的。

hujunhua 发表于 2018-1-22 16:32:09

@wayne
"目前我还是没看出规律来,或者需要换种形式?"
既然能一致保持m+1/2不变,这种形式就是正确的方向。只是需要像前面一样,在分子分母间重新分配因子,略作一下变形,规律方能更浅显。

wayne 发表于 2018-1-23 11:30:07

@hujunhua
恩,昨晚上试过了重新分配,发现分子分母还是那么的大,因子分解后还是那几个大质数的乘积,而且容易生成超大的质数,无果.

后来,为了评估这些数的增长速度的模型,我对这些分子/分母都做了取对数再开方的运算,画图发现近似一条完美的直线(观察的数据有12组,即连分数展开到了第12层).也就是说,分子或分母的增长速度的模型大致是$O(a^(k^2))$,[$a$是常数,$k$是连分数的层级数]

baindeglace 发表于 2018-1-24 19:57:16

考虑一下两个数列,$S_n$和$T_n$:
$$S_n= \sum_{k=1}^n \frac{1}{k^2}$$
$$T_n = S_n +\frac{1}{n} =\sum_{k=1}^n \frac{1}{k^2}+\frac{1}{n}$$
$ \forall n$很显然有$S_n < T_n$
事实上,可以证明$T_n$是递减的,于是有$$S_1 < S_2 < \ldots < S_n < T_n < \ldots < T_2 < T_1$$
另一方面,易知两者有同一个极限$\frac{\pi^2}{6}$,于是有
$$S_n < \frac{\pi^2}{6} < T_n = S_n +\frac{1}{n}$$,进而有
$$\frac{\pi^2}{6} - S_n < \frac{1}{n} $$

hujunhua 发表于 2018-1-25 14:37:23

baindeglace 发表于 2018-1-24 19:57
考虑一下两个数列,$S_n$和$T_n$:
$$S_n= \sum_{k=1}^n \frac{1}{k^2}$$
$$T_n = S_n +\frac{1}{n} =\ ...

方法是正确的。8#和11#的上下限就是按这种想法推导出来的。
8#和10#的推导过程与@wayne的方法有所不同。wayne可能是先有级数(明有或者暗有),然后用待定系数法;而8#和10#则不依赖于已知级数。

设`\D T_n=S_n+\frac{a}{n+b}`,对任意给定常数`a,b`,皆有`\D\lim_{n\to\infty}T_n=\D\lim_{n\to\infty}S_n`,然后
1、求最大的a、然后最小的b, 使`T_n`为递增序列
2、求最小的a、然后最大的b, 使`T_n`为递减序列

当让b随n而变化时,就层层递进得到连分数。

hujunhua 发表于 2018-1-25 15:51:23

在Mathematica10中可以计算出那个连分数,,果然已有啊。

数学星空 发表于 2018-1-25 19:33:25

$\zeta(3,m+1)={1}/{-(2m^2+2m+1)+{1^6}/{3(2m^2+2m+3)+{2^6}/{-5(2m^2+2m+7)+{3^6}/{7(2m^2+2m+13)+{4^6}/{-9(2m^2+2m+21)+{5^6}/{\ddots}}}}}}$
页: 1 2 [3] 4 5
查看完整版本: ∑1/m^2的截尾误差