王守恩
发表于 2018-3-5 14:43:42
本帖最后由 王守恩 于 2018-3-5 18:01 编辑
mathematica 发表于 2018-3-4 17:42
这个办法的道理是?
我觉得是瞎猫碰到死耗子,
因为我用别的直角三角形,发现没道理,不符合
谢谢mathematica的鼓励!
请mathematica用别的直角三角形进行验算。
谢谢mathematica!
\(\D由\frac{\tan(A)}{\tan(B)}=\frac{1}{2}\ \ \ \ \ 解得A\ \ \ 其中\ \ A+B=\arcsin\left(\frac{3}{5}\right)\ \ \ \ ”3","5"为题设条件\)
\(EF_{\min}=\D\frac{3×4\sin(A)}{2\cos^2(A)}=12\sqrt2−9\sqrt3\ \ \ \ 其中"4"为题设条件\)
王守恩
发表于 2018-3-5 17:57:56
mathematica 发表于 2018-3-4 17:42
这个办法的道理是?
我觉得是瞎猫碰到死耗子,
因为我用别的直角三角形,发现没道理,不符合
好像是不同的解法。
谢谢mathematica!
\(\D由\frac{\tan(A)}{\tan(B)}=\frac{1}{2}\ \ \ \ \ 解得A\ \ \ 其中\ A+B=\arcsin\left(\frac{3}{5}\right)\ \ \ ”3","5"为题设条件\)
\(EF_{\min}=\D\frac{3×4}{2×5\cos^2(A)\cos(B)}\ \ \ \ 其中"3","4","5"为题设条件\)
mathe
发表于 2018-3-5 19:39:45
对于一般情况,我们假设AA'分角A为u,v两个角,于是有
$tan(v)=tan(A-u)=\frac{tan(A)-tan(u)}{1+tan(A)tan(u)}$
记$T=tan(A), x=tan(u), y=tan(v)$,于是$x+y=x+\frac{T-x}{1+Tx}=\frac{T(1+x^2)}{1+Tx}$
$AA'=2h=c/{cos(u)}$,所以$4h^2=c^2(1+tan^2(u))=c^2(1+x^2)$
$EF^2=h^2(tan(u)+tan(v))^2=c^2/4(1+x^2)(x+y)^2={c^2T^2}/4\frac{(1+x^2)^3}{(1+Tx)^2}$
所以这套题目一般情况就是求函数$\frac{(1+x^2)^3}{(1+Tx)^2}$在$0<x<T$时的最小值,并且这时$x,y$分别是多少?
我们可以对函数求对数再求导得出取极值条件为
${6x}/{1+x^2}={2T}/{1+Tx}$
也就是$x^2+{3x}/{2T}-1/2=0$
而变量$y$显然满足$(T-y)^2/(1+Ty)^2+3(T-y)/{2T(1+Ty)}-1/2=0$
也就是$y^2+{3y}/T-2=0$,于是的确有$y=2x$
mathematica
发表于 2018-3-5 20:05:24
mathe 发表于 2018-3-5 19:39
对于一般情况,我们假设AA'分角A为u,v两个角,于是有
$tan(v)=tan(A-u)=\frac{tan(A)-tan(u)}{1+tan(A)tan ...
你觉得有初等办法计算吗?我只会微积分求解
数学星空
发表于 2018-3-5 21:22:50
根据13#的思路:若没有条件$angle B=90^0$,即对一般三角形有
记$tan(A)=m$,$tan(B)=n$
$EF^2=h^2(tan(u)+tan(v))^2=\frac{c^2m^2n^2(1+x^2)^3}{4(x+n)^2(mx+1)^2}$
所以一般情况就是求函数$\frac{(1+x^2)^3}{(x+n)^2(1+mx)^2}$在$0<x<m$时的最小值,并且这时$x,y$分别是多少?
我们可以对函数求对数再求导得出取极值条件为
${6x}/{1+x^2}+{2}/{x+n}={2m}/{1+mx}$
也就是$3mx^3+(4+2mn)x^2+3nx+1-mn=0$
且$y={m-x}/{1+mx}$
王守恩
发表于 2018-3-6 07:53:08
本帖最后由 王守恩 于 2018-3-6 14:36 编辑
mathematica 发表于 2018-3-5 20:05
你觉得有初等办法计算吗?我只会微积分求解
谢谢mathematica!
\("3","4","5"为题设条件(可以变动)\)
\(\D EF_{min}=\frac{3×4}{2×5\cos^2(A)\cos(B)}\ \ \ \ \ 其中 A+B=\arcsin\left(\frac{3}{5}\right)\)
\(解题过程需要不断调整A,B的取值,直到\D\frac{\tan(A)}{\tan(B)}=\frac{1}{2}时达到极小值\)
数学星空
发表于 2018-3-6 18:56:31
对于一般三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,AE=y,BA'=x,AF=z,EF=L则有:
$L^2-y^2-z^2+2yzcos(A)=0$ (1)
$z^2-(b-z)^2-(a-x)^2+2(b-z)(a-x)cos(C)=0$ (2)
$y^2-x^2-(c-y)^2+2x(c-y)cos(B)=0$ (3)
先消元{y,z}后,利用对变量x求导为0,得到结果:
$-729a^2b^2c^2(b+a-c)^4(b+c+a)^4(a-b+c)^4(-b-c+a)^4+108(-114a^6c^2b^4+38b^6a^2c^4+38a^2c^6b^4+35c^2b^2a^8-114c^4b^2a^6+118c^6b^2a^4+204a^4c^4b^4+118a^4c^2b^6-39a^2c^8b^2-39a^2c^2b^8-4a^8c^4+6c^6a^6+4b^8c^4-4a^4c^8+6b^6a^6+4c^8b^4-4a^8b^4-4b^8a^4-6c^6b^6+a^10c^2+b^10a^2+b^2a^10-b^10c^2+c^10a^2-c^10b^2)(b+a-c)^2(b+c+a)^2(a-b+c)^2(-b-c+a)^2L^2+(-3456a^2c^2b^14+3840c^4b^2a^12-12672a^10c^6b^2-3456a^2c^14b^2-38016a^4c^10b^4-24192a^2c^10b^6+35328a^6c^4b^8-33024a^6c^10b^2+26784a^8c^8b^2+35328a^6c^8b^4+3840c^2b^4a^12-26112a^6c^6b^6-8640a^8c^4b^6-10944a^10c^4b^4+30240a^2c^8b^8+19584a^4c^2b^12-24192b^10c^6a^2+12096a^2c^12b^4-16a^18+16c^18+16b^18+19584a^4c^12b^2+21888a^4c^8b^6+2784c^10b^8+2880c^14b^4+18144a^10b^8-624c^2b^16+432a^2b^16-38016a^4c^4b^10-5056c^6b^12-10752b^6a^12+12096b^12c^4a^2-12672a^10c^2b^6+26784a^8c^2b^8+18144c^8a^10-3456a^4b^14-18144a^8b^10-5056c^12b^6+3456c^4a^14-18144c^10a^8+2784c^8b^10+10752c^12a^6+10752b^12a^6-3456c^14a^4-10752c^6a^12-432a^16b^2-432a^16c^2+432c^16a^2-624c^16b^2+3456b^4a^14+21888a^4c^6b^8-8640a^8c^6b^4+2880c^4b^14-33024a^6c^2b^10)L^4+64(b^2+a^2-c^2)^4(a^2+c^2-b^2)^4L^6=0$ (4)
$-4a^2c^2(a^4-a^2c^2-2a^2b^2-b^2c^2+b^4)+a(a^6-13a^2c^4+c^6-3b^2c^4-14b^2a^2c^2+11a^4c^2+3c^2b^4+3b^4a^2-b^6-3b^2a^4)x+(-3c^2b^4-6b^2a^2c^2-7a^4c^2+3b^2c^4-3a^6+7b^2a^4+b^6-5b^4a^2+11a^2c^4-c^6)x^2+2a(b^2+a^2-c^2)(a^2+c^2-b^2)x^3=0$ (5)
$-9b^2c^3(b+c+a)(-b-c+a)(b+a-c)(a-b+c)+3c^2(b+c+a)(-b-c+a)(b+a-c)(a-b+c)(7b^2-c^2+a^2)y-8c(a^6-3a^4c^2+3a^2c^4-3b^4a^2+4b^2c^4-5c^2b^4-c^6+2b^6)y^2+4(b^2+a^2-c^2)(a^2+c^2-b^2)^2y^3=0$(6)
$-9b^3c^2(b+a-c)(b+c+a)(a-b+c)(-b-c+a)+3b^2(b+c+a)(-b-c+a)(b+a-c)(a-b+c)(-b^2+7c^2+a^2)z-8b(-b^6-3b^2a^4+2c^6+a^6-3a^2c^4+4c^2b^4-5b^2c^4+3b^4a^2)z^2+4(a^2+c^2-b^2)(b^2+a^2-c^2)^2z^3=0$ (7)
若记${EO}/{OF}=k$
$2(-a^2b^2-b^2c^2+a^4+c^4-2a^2c^2)(a^2+c^2-b^2)k^3+(-b^2c^4-9a^2c^4+15a^4c^2-7a^6+c^6-9b^4a^2+18b^2a^2c^2+b^6+15b^2a^4-c^2b^4)k^2+(c^2b^4-15a^4c^2+9a^2c^4+b^2c^4-18b^2a^2c^2+9b^4a^2+7a^6-c^6-15b^2a^4-b^6)k-2(a^4-a^2c^2-2a^2b^2-b^2c^2+b^4)(b^2+a^2-c^2)=0$(8)
对于$\angle B=90^0$即 $b^2=a^2+c^2$ 化简(8)得到
$8a^4c^2(2k-1)^2=0$
即$k=\frac{1}{2}$
(4)~(7)简化为
$256L^4a^4+(-864a^4c^2-3888a^2c^4-2916c^6)L^2+729a^2c^6+729a^4c^4=0$
$c^2a-3c^2x-2x^2a=0$
$16y^2a^2+(-18c^3-24a^2c)y+9c^4+9a^2c^2=0$
$64a^4z^4+(-468a^2c^4-144a^4c^2-324c^6)z^2+162a^2c^6+81c^8+81a^4c^4=0$
例如:我们可以算得
${L = 1.893788929, a = 4, b = 3, c = 2, x = 2.436097213, y = 1.235042816, z = 1.159721139}$
$\{L = 0.8192171166, a = 2, b = 3, c = 4, x = 1.719595644, y = 1.685589346, z = 1.547055433\}$
${L = 0.9751765180, a = 3, b = 4, c = 2, x = .4507180645, y = 1.101412875, z = 1.315113004}$
${L = 1.382105480, a = 3, b = 4, c = 5, x = 2.101020514, y = 2.247448714, z = 2.101020514}$
${L = 2.419443088, a = 5, b = 3, c = 4, x = 2.926559384, y = 1.758782518, z = 1.661441817}$
${L = 1.621536787, a = 4, b = 5, c = 3, x = 1.023156055, y = 1.674474719, z = 1.918417604}$
mathematica
发表于 2018-3-6 21:25:12
数学星空 发表于 2018-3-6 18:56
对于一般三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,AE=y,BA'=x,AF=z,EF=L则 ...
什么情况下是EO=OF取得极值,是等腰三角形的时候吗?
王守恩
发表于 2018-3-7 10:07:21
本帖最后由 王守恩 于 2018-3-7 11:02 编辑
数学星空 发表于 2018-3-6 18:56
对于一般三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,AE=y,BA'=x,AF=z,EF=L则 ...
\(对于直角三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,\)
\(1,设AE=\sin(90)\ \ EO=\sin(A)\ \ BE=\cos(2A)\)
\(2,已知\ \ AE+BE=\sin(90)+\cos(2A)=4\ \ 求EO=\sin(A)=K\)
\(3,由方程\ \D\frac{K}{4}=\frac{\sin(A)}{\sin(90)+\cos(2A)}\ \ 解得\ \ K=\frac{4\sin(A)}{\sin(90)+\cos(2A)}=\frac{4\sin(A)}{1+\cos(2A)}=\frac{4\sin(A)}{2\cos^2(2A)}\)
\(4,EF=EO+OF=K+2K=\D\frac{3×4\sin(A)}{2\cos^2(2A)}\)
王守恩
发表于 2018-3-7 12:30:48
本帖最后由 王守恩 于 2018-3-7 13:37 编辑
数学星空 发表于 2018-3-6 18:56
对于一般三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,AE=y,BA'=x,AF=z,EF=L则 ...
\(对于一般三角形,我们设折痕EF交AB于E,交AC于F,顶点A落在BC上于点A',AA'交EF于点O,AB=a,\angle ABC=\theta\)
\(1,设AE=\sin(90)\ \ EO=\sin(A)\ \ BE=\frac{\sin(2A+\theta)}{\sin(\theta)}\)
\(2,已知\ \ AE+BE=\sin(90)+\frac{\sin(2A+\theta)}{\sin(\theta)}=a\ \ 求EO=\sin(A)=K\)
\(3,由方程\ \D\frac{K}{a}=\frac{\sin(A)}{\sin(90)+\frac{\sin(2A+\theta)}{\sin(\theta)}}\ \ 解得\ \ K=\frac{a\sin(A)}{\sin(90)+\frac{\sin(2A+\theta)}{\sin(\theta)}}=\frac{a\sin(A)}{1+\frac{\sin(2A+\theta)}{\sin(\theta)}}=\frac{a\sin(A)\sin(\theta)}{\sin(\theta)+\sin(2A+\theta)}\)
\(4,EF=EO+OF=K+pK=(1+p)K=\D\frac{(1+p)×a\sin(A)\sin(\theta)}{\sin(\theta)+\sin(2A+\theta)}\)
我还真不知道这个\(p\)的出现有什么规律。