葡萄糖 发表于 2021-12-7 18:15:10

本帖最后由 葡萄糖 于 2021-12-7 18:16 编辑

wayne 发表于 2021-12-7 13:42
我来给个稍微不那么显然的问题:求方程是否存在根式表达: $1 - x + x^3 - x^4 + x^5 + 5 x^6 + 4 x^7 + x^8 = 0$

R := RationalField();
R < x > := PolynomialRing(R);
f := 1 - x + x^3 - x^4 + x^5 + 5*x^6 + 4*x^7 + x^8;
G := GaloisGroup(f);
print G;
GroupName(G: TeX:=true);
IsSolvable(G);
Magma显示方程的伽罗瓦群的可解群
Permutation group G acting on a set of cardinality 8
Order = 64 = 2^6
    (1, 6)(2, 4)(3, 8)(5, 7)
    (1, 3)(2, 5)(4, 7)(6, 8)
    (2, 7)(4, 5)
    (3, 6)(4, 5)
    (4, 5)
    (1, 2, 3, 4, 8, 7, 6, 5)
C_2{\rm wrC}_4
true

wayne 发表于 2021-12-7 18:43:10

你这并没有给出解的 形式

xiaoshuchong 发表于 2022-3-21 21:03:38

wayne 发表于 2021-12-7 13:42
我来给个稍微不那么显然的问题:求方程是否存在根式表达: $1 - x + x^3 - x^4 + x^5 + 5 x^6 + 4 x^7 + x^ ...

原八次方程可因式分解为四个二次方程,即
\[\begin{eqnarray*}
&&x^{8}+4x^{7}+5x^{6}+x^{5}-x^{4}+x^{3}-x+1\\&=&\prod_{n=1}^{4}\left(x^{2}+x+t\right)
\end{eqnarray*}\]
其中,$t^{4}+t^{3}+t^{2}+t+1=0$,容易看出来其解为$t_{n}=\exp\left(\frac{2n\pi i}{5}\right),n=1,2,3,4$
所以,方程的根可以表示为
\[\begin{eqnarray*}
x&=&\frac{-1\pm\sqrt{1-4\exp\left(\frac{2n\pi i}{5}\right)}}{2},n=1,2,3,4
\end{eqnarray*}\]
或者展开为根式
\[\begin{eqnarray*}
x_{1,2,3,4}&=&\frac{-1\pm\sqrt{2+\sqrt{5}\pm\sqrt{10-2\sqrt{5}}i}}{2}\\x_{5,6,7,8}&=&\frac{-1\pm\sqrt{2-\sqrt{5}\pm\sqrt{10+2\sqrt{5}}i}}{2}
\end{eqnarray*}\]

nyy 发表于 2024-1-12 15:41:50

本帖最后由 nyy 于 2024-1-12 15:43 编辑

wayne 发表于 2021-12-7 18:43
你这并没有给出解的 形式

让我来求解一下你的方程!

http://magma.maths.usyd.edu.au/calc/
R<x> := PolynomialRing(Rationals());
f := 1 - x + x^3 - x^4 + x^5 + 5*x^6 + 4*x^7 + x^8;
K, R:= SolveByRadicals(f : Name := "r");
K:Maximal;


输出结果

K<r1>
    |
    |
$1<r2>
    |
    |
$2<r3>
    |
    |
$3<r4>
    |
    |
$4<r5>
    |
    |
$5<r6>
    |
    |
    Q

K: r1^2 + (-1/4*r5 - 1/4)*r4 + 1/4*r5 - 1/2
$1 : r2^2 + 1/2*r4 + -1/4*r5 - 1/2
$2 : r3^2 + -1/2*r4 + -1/4*r5 - 1/2
$3 : r4^2 + -1/2*r5 + 5/2
$4 : r5^2 - 5
$5 : r6^2 - 341



然后把上面的求解结果中的
$2 : r3^2 + -1/2*r4 + -1/4*r5 - 1/2
$3 : r4^2 + -1/2*r5 + 5/2
$4 : r5^2 - 5

拿出来联立求解方程组,把这个活交给mathematica,上代码
Clear["Global`*"];(*Clear all variables*)
$MaxExtraPrecision =200;
ans=Solve[{
r3^2 + -1/2*r4 + -1/4*r5 - 1/2,
r4^2 + -1/2*r5 + 5/2,
r5^2 - 5
}==0,{r3,r4,r5}]//Simplify;
aa=Union[(r3/.ans)-1/2]//FullSimplify//ToRadicals
f=1 - x + x^3 - x^4 + x^5 + 5*x^6 + 4*x^7 + x^8
bb=(f/.x->aa)//N[#,20]&
cc=Sort@Abs@bb


求解后再验根,数值验根是正确的,求解结果如下:

\[\begin{array}{c}
-\frac{1}{2}-\frac{1}{2} \sqrt{2+\sqrt{5}-i \sqrt{10-2 \sqrt{5}}} \\
\frac{1}{2} \left(-1+\sqrt{2+\sqrt{5}-i \sqrt{10-2 \sqrt{5}}}\right) \\
-\frac{1}{2}-\frac{1}{2} \sqrt{2+\sqrt{5}+i \sqrt{10-2 \sqrt{5}}} \\
\frac{1}{2} \left(-1+\sqrt{2+\sqrt{5}+i \sqrt{10-2 \sqrt{5}}}\right) \\
\frac{1}{2} \left(-1-\sqrt{2-\sqrt{5}-i \sqrt{2 \left(5+\sqrt{5}\right)}}\right) \\
\frac{1}{2} \left(-1+\sqrt{2-\sqrt{5}-i \sqrt{2 \left(5+\sqrt{5}\right)}}\right) \\
\frac{1}{2} \left(-1-\sqrt{2-\sqrt{5}+i \sqrt{2 \left(5+\sqrt{5}\right)}}\right) \\
\frac{1}{2} \left(-1+\sqrt{2-\sqrt{5}+i \sqrt{2 \left(5+\sqrt{5}\right)}}\right) \\
\end{array}\]

这个就是你要的根式解!


页: 1 [2]
查看完整版本: 分圆方程式根式求解