没有整数解的莫代尔曲线会有有理数解吗?
假设方程\(y^2=x^3+p\)没有整数解,那么它会有有理数解吗?设\(\D y=\frac{Y}{n}\),\(\D x=\frac{X}{n}\),代入后化为\(\D \frac{Y^2}{n^2}=\frac{X^3}{n^3}+p\),去分母\(nY^2=X^3+n^3p\),也即\((n^2Y)^2=(nX)^3+pn^6\),也就是说,如果\(y^2=x^3+p\)没有有理数解,那么对于任意非零整数\(n\),\(y^2=x^3+pn^6\)无整数解。
如何证明这一点?(或否定) 没有整数解但是有有理解的应该很常见 看 https://oeis.org/A054504 有对于p=6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, 45, 46, 47, 51,...无整数解
计算对应曲线的阶
(22:18) gp > E=ellinit();
(22:18) gp > ellanalyticrank(E)
%2 =
(22:18) gp > ellanalyticrank(ellinit())
%3 =
(22:18) gp > ellanalyticrank(ellinit())
%4 =
(22:19) gp > ellanalyticrank(ellinit())
%5 =
(22:19) gp > ellanalyticrank(ellinit())
%6 =
(22:19) gp > ellanalyticrank(ellinit())
%7 =
(22:19) gp > ellanalyticrank(ellinit())
%8 =
(22:19) gp > ellanalyticrank(ellinit())
%9 =
(22:19) gp > ellanalyticrank(ellinit())
%10 =
(22:19) gp > ellanalyticrank(ellinit())
%11 =
(22:19) gp > ellanalyticrank(ellinit())
%12 =
(22:19) gp > ellanalyticrank(ellinit())
%13 =
(22:19) gp > ellanalyticrank(ellinit())
%14 =
(22:19) gp > ellanalyticrank(ellinit())
%15 =
(22:19) gp > ellanalyticrank(ellinit())
%16 =
其中对于p=39,46,47对应的阶为1,说明对应的有理解存在,就是p=39,46,47都是反例 看链接https://oeis.org/A001014/a001014.txt
其中给出
E_+00039: r = 1 t = 1 #III =1
E(Q) = <(217/4, 3197/8)>
R = 5.4183739683
0 integral points
也就是说曲线$y^2=x^3+39$没有整数点但是有有理数点(217/4, 3197/8)作为生产元 本帖最后由 xiaoshuchong 于 2022-3-27 13:44 编辑
mathe 发表于 2018-5-27 06:47
看链接https://oeis.org/A001014/a001014.txt
其中给出
最有意思的例子是$y^2=x^3+7823$
没有整数解,最小有理点是
\[\begin{eqnarray*}
x&=&\frac{2263582143321421502100209233517777}{11981673410095561^2}\\
y&=&\frac{186398152584623305624837551485596770028144776655756}{11981673410095561^3}
\end{eqnarray*}\]
页:
[1]