- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40484
- 在线时间
- 小时
|
发表于 2018-5-26 22:23:33
|
显示全部楼层
看 https://oeis.org/A054504 有对于p=6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, 45, 46, 47, 51,...无整数解
计算对应曲线的阶
(22:18) gp > E=ellinit([0,7]);
(22:18) gp > ellanalyticrank(E)
%2 = [0, 3.0414172284278810424268528156464796264]
(22:18) gp > ellanalyticrank(ellinit([0,7]))
%3 = [0, 3.0414172284278810424268528156464796264]
(22:18) gp > ellanalyticrank(ellinit([0,14]))
%4 = [0, 2.7095947101363427554171013565399014510]
(22:19) gp > ellanalyticrank(ellinit([0,20]))
%5 = [0, 2.5532147367621155708875002997672877220]
(22:19) gp > ellanalyticrank(ellinit([0,21]))
%6 = [0, 2.5325369623438289744759653154434874276]
(22:19) gp > ellanalyticrank(ellinit([0,23]))
%7 = [0, 2.4944283611860673350734973257033976850]
(22:19) gp > ellanalyticrank(ellinit([0,29]))
%8 = [0, 2.3998974010004143986659319990931671331]
(22:19) gp > ellanalyticrank(ellinit([0,32]))
%9 = [0, 2.3608442970695375324491842692940779289]
(22:19) gp > ellanalyticrank(ellinit([0,34]))
%10 = [0, 2.3371101894880057595475144277220131475]
(22:19) gp > ellanalyticrank(ellinit([0,39]))
%11 = [1, 12.377052031405709570910216427916306508]
(22:19) gp > ellanalyticrank(ellinit([0,42]))
%12 = [0, 2.2562339333951459850961496144675544680]
(22:19) gp > ellanalyticrank(ellinit([0,45]))
%13 = [0, 2.2304385163122159011501697101803006765]
(22:19) gp > ellanalyticrank(ellinit([0,46]))
%14 = [1, 11.569116184827746560332118571869366616]
(22:19) gp > ellanalyticrank(ellinit([0,47]))
%15 = [1, 7.4994239040358623206273761551626204460]
(22:19) gp > ellanalyticrank(ellinit([0,51]))
%16 = [0, 2.1843923439202974271860166187381400929]
其中对于p=39,46,47对应的阶为1,说明对应的有理解存在,就是p=39,46,47都是反例 |
|