王守恩 发表于 2023-9-3 16:14:00

这些数字串应该如何来描述?
Table,x],{k,2,7}]
{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 15397, 31171, 62952, 126891, 255379,
{0, 0, 1, 5, 21, 79, 281, 963, 3217, 10547, 34089, 108955, 345137, 1085331, 3392377, 10549739,
{0, 0, 1, 7, 40, 205, 991, 4612, 20905, 92935, 407056, 1762117, 7556095, 32148940, 135892321,
{0, 0, 1, 9, 65, 421, 2569, 15085,86241,483429,2669305,14564061,78699089,421880725,
{0, 0, 1, 11, 96, 751, 5531, 39186, 270241,1827071,12166176,80043931,521516711,3370600266,
{0, 0, 1, 13, 133, 1219, 10513,87199,703921,5570263,43409905,334234615,2548342369,
{0, 0, 1, 15, 176, 1849, 18271, 173608, 1605297, 14549487,129860704,1145089065,9998390207,

northwolves 发表于 2023-9-3 21:37:55

$a(n,k)=(2k-1)a(n,k-1)-(k-1)^2a(n,k-2)-k(k-1)a(n,k-3),a(1)=0,a(2)=1,a(3)=2k-1$

northwolves 发表于 2023-9-3 22:32:26

$a(n,k)=\text{Round}\left$

王守恩 发表于 2023-9-4 12:09:22

(1)+(2)=k^n,(1)=k^n-(2)怎么编排也出不来。
(1)Table, x], {k, 1, 7}]
{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 15397, 31171, 62952, 126891, 255379,
{0, 0, 1, 5, 21, 79, 281, 963, 3217, 10547, 34089, 108955, 345137, 1085331, 3392377, 10549739,
{0, 0, 1, 7, 40, 205, 991, 4612, 20905, 92935, 407056, 1762117, 7556095, 32148940, 135892321,
{0, 0, 1, 9, 65, 421, 2569, 15085,86241,483429,2669305,14564061,78699089,421880725,
{0, 0, 1, 11, 96, 751, 5531, 39186, 270241,1827071,12166176,80043931,521516711,3370600266,
(2)Table, {k, 1, 8}]
{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,
{1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136,24960, 68192, 186304, 508992, 1390592, 3799168,
{1, 4, 15, 57, 216, 819, 3105,11772,44631,169209,641520,2432187,9221121,34959924,
{1, 5, 24, 116, 560, 2704,13056,63040,304384,1469696,7096320,34264064,165441536,
{1, 6, 35, 205, 1200, 7025, 41125, 240750, 1409375,8250625,48300000,282753125,1655265625,

nyy 发表于 2023-9-4 13:27:51

王守恩 发表于 2023-9-4 12:09
(1)+(2)=k^n,(1)=k^n-(2)怎么编排也出不来。

{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 75 ...

我给你找下通项公式:
Clear["Global`*"];(*清除所有变量*)
xx={0,0,1,3,8,19,43,94,201,423,880,1815,3719,7582,15397,31171,62952,126891,255379}
aaa=FindSequenceFunction//FullSimplify


0,0,1,3,8,19,43,94,201,423,880,1815,3719,7582,15397,31171,62952,126891,255379的通项公式
通项公式结果表达式
\[\frac{1}{10} \left(5\times2^n+\left(\frac{1}{2} \left(1-\sqrt{5}\right)\right)^n \left(-5+\sqrt{5}\right)-\left(\frac{1}{2} \left(1+\sqrt{5}\right)\right)^n \left(5+\sqrt{5}\right)\right)\]

nyy 发表于 2023-9-4 15:15:13

本帖最后由 nyy 于 2023-9-4 15:16 编辑

王守恩 发表于 2023-9-4 12:09
(1)+(2)=k^n,(1)=k^n-(2)怎么编排也出不来。

{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 75 ...

{0,0,1,5,21,79,281,963,3217,10547,34089,108955,345137,1085331,3392377,10549739}

我都有现成代码,你也不算一下。自己修改一下就行了!

Clear["Global`*"];(*清除所有变量*)
xx={0,0,1,5,21,79,281,963,3217,10547,34089,108955,345137,1085331,3392377,10549739}
aaa=FindSequenceFunction//FullSimplify


通项公式
\[\frac{1}{12} \left(4\times3^n+\left(1-\sqrt{3}\right)^n \left(-3+\sqrt{3}\right)-\left(1+\sqrt{3}\right)^n \left(3+\sqrt{3}\right)\right)\]

northwolves 发表于 2023-9-4 15:31:21

nyy 发表于 2023-9-4 15:15
{0,0,1,5,21,79,281,963,3217,10547,34089,108955,345137,1085331,3392377,10549739}

我都有现成代码, ...

Table+1)^(n+2)/(4Sqrt)],{n,0,10}]

northwolves 发表于 2023-9-4 15:43:29

Table[{k,Table)) ((k-1+Sqrt[(k-1)(k+3)])/2)^n],{n,0,10}]},{k,2,9}]//MatrixForm

\begin{array}{cc}
2 & \{0,0,1,3,8,19,43,94,201,423,880\} \\
3 & \{0,0,1,5,21,79,281,963,3217,10547,34089\} \\
4 & \{0,0,1,7,40,205,991,4612,20905,92935,407056\} \\
5 & \{0,0,1,9,65,421,2569,15085,86241,483429,2669305\} \\
6 & \{0,0,1,11,96,751,5531,39186,270241,1827071,12166176\} \\
7 & \{0,0,1,13,133,1219,10513,87199,703921,5570263,43409905\} \\
8 & \{0,0,1,15,176,1849,18271,173608,1605297,14549487,129860704\} \\
9 & \{0,0,1,17,225,2665,29681,317817,3311425,33816905,340073361\} \\
\end{array}

王守恩 发表于 2023-9-4 16:31:37

本来是这样一道题: f(n)表示是由 0,1,2,3 组成的长度为 n 的所有序列中连续两个 0 出现的次数总和。
f(n)=0, 1, 8, 48, 256, 1280, 6144, 28672, ......
Table, x], {k, 1, 7}]
{0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688,245760,524288,
{0, 1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, 2125764, 6908733, 22320522,
{0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336,50331648,218103808,
{0, 1, 10, 75, 500, 3125, 18750, 109375, 625000,3515625,19531250,107421875,585937500,
{0, 1, 12, 108, 864, 6480, 46656,326592,2239488,15116544,100776960,665127936,4353564672,
用你们的方法来表示这些数字串,我还是不会(一下子领悟不了)。
当然,OEIS是不可能有这些共性方法的。

northwolves 发表于 2023-9-4 18:09:54

王守恩 发表于 2023-9-4 16:31
本来是这样一道题: f(n)表示是由 0,1,2,3 组成的长度为 n 的所有序列中连续两个 0 出现的次数总和。
f(n)=0 ...

f(n)=0, 1, 8, 48, 256, 1280, 6144, 28672, ......

$f_n=(n - 1)*4^{n-2}$
页: 27 28 29 30 31 32 33 34 35 36 [37] 38 39 40 41 42 43 44 45 46
查看完整版本: 数字串的通项公式