\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}=\frac{273}{8}\)
联立\(x+y+z=1\),并消元\(z\)得到:
\(16x^6+48x^5y-201x^4y^2-482x^3y^3-201x^2y^4+48xy^5+16y^6-48x^5-112x^4y+418x^3y^2+418x^2y^3-112xy^4-48y^5+56x^4+96x^3y-177x^2y^2+96xy^3+56y^4-32x^3-32x^2y-32xy^2-32y^3+8x^2+8y^2=0\)
画图得到:
{x^2/y^2+x^2/z^2+y^2/x^2+y^2/z^2+z^2/x^2+z^2/y^2-c,x+y+z-c}/.({x,y,z}//{#,(*正交旋转*){{Sqrt,0,1/Sqrt},{-(1/Sqrt),1/Sqrt,1/Sqrt},{-(1/Sqrt),-(1/Sqrt),1/Sqrt}}.#}&//Transpose//Rule@@#&/@#&)//#[]/.Solve[#[]==0,z][]&//Factor//Numerator//FactorTermsList[#][]&//#/.{x->Cos[\]r,y->Sin[\]r}&//Collect[#,{r,c},TrigReduce]&
\(4 c^7-24 c^6+81 c^3 r^4+r^5 \left(162 \sqrt{6} c \cos (3 \theta )-54 \sqrt{6} c^2 \cos (3 \theta )\right)+\left(-36 c^5-216 c^4\right) r^2+r^3 \left(12 \sqrt{6} c^4 \cos (3 \theta )+144 \sqrt{6} c^3 \cos (3 \theta )\right)+r^6 (27 c (\cos (6 \theta )+1)+81 (\cos (6 \theta )-8))\)
几点重要的澄清
一、由一个特定三角形引导的这种几何变换基于中点和中心对称,故只在仿射变换下不变,在射影变换群下不能保持。二、为什么1#要在仿射平面\(x+y+z=1\)而不在仿射平面\(z=1\)上进行推导?
因为前者的三个单位点(1,0,0), (0,1,0), (0,0,1)是有穷远点,而在后者上面有两个是无穷远点。故在前者上面推导的关系式可通过仿射变换适用于所有有穷三角形,而在后者上面推导的关系式通过仿射变换只能囿于无穷三角形。可以预料,对于仿射平面\(z=1\)上的有穷三角形,变换的代数式不同于\(xx'=yy'=zz'\),究竟怎样,@数学星空 可以暴力一下看看。
三、仿射平面\(x+y+z=1\)上的两个共轭圆环点是\((1,\omega,\omega^2),(1,\omega^2,\omega)\). 通过这两点的非退化二次曲线都是圆。
注:\(\omega\)是三次单位根。
四、变换的代数式的差别不是本质的,不影响变换的那些几何特性。前面在特殊仿射平面上的性质、命题等,在其它仿射平面上仍然成立。 在平面`z=1`上推导,那就取等腰直角三角形`X(1,0,1), Y(0,1,1),C(0,0,1)`,记由此三角形引导的这种几何变换为 `Q`,假定\[
Q(x,y,z)=(x',y',z')\]我们已经知道,如果取含无穷远点的三角形`A(1,0,0), B(0,1,0),C(0,0,1)`会得到三坐标反演`T`.
仿mathe在11#的推导符号,记三角形`\triangle XYC\to\triangle ABC`的一个射影变换为`P`, 由\[
P^{-1}=\begin{bmatrix}1&&0&&0\\0&&1&&0\\1&&1&&1\end{bmatrix}\to P=\begin{bmatrix}1&&0&&0\\0&&1&&0\\-1&&-1&&1\end{bmatrix}
\]由于这种几何变换在射影变换下得以保持,故有`PQ=TP`, 由\[PQ(x,y,z)^t=P(x',y',z')^t=(x',y',z'-x'-y')^t\\TP(x,y,z)^t=T(x,y,z-x-y)^t
\]得基于三角形XYC的几何变换的反演式为\ hujunhua 发表于 2019-3-21 02:28
一、由一个特定三角形引导的这种几何变换基于中点和中心对称,故只在仿射变换下不变,在射影变换群下不能保 ...
一条线段AB的中点M在射影中的意义就是和无穷点F一起,四个点共轭调和,或者说较比(A,B;M,F)=-1。
射影变换后,中点自然不再是中点了,但是我们只要找出一条相对直线,把这条直线和三角形三边交点关于这条边两个顶点的共轭调和找出来即可。
${x^2}/{y^2}+{y^2}/{x^2}+{x^2}/{z^2}+{z^2}/{x^2}+{y^2}/{z^2}+{z^2}/{y^2}=9$对应的平面图像如上图(我们把z=1代入) zeroieme 发表于 2019-3-21 00:28
\(4 c^7-24 c^6+81 c^3 r^4+r^5 \left(162 \sqrt{6} c \cos (3 \theta )-54 \sqrt{6} c^2 \cos (3 \the ...
:lol, 那我再复制一下:
这个方程该怎么画图,关于极坐标的隐函数 画图,我好像还没找到方法。。。 wayne 发表于 2019-3-21 11:18
, 那我再复制一下:
这个方程该怎么画图,关于极坐标的隐函数 画图,我好像还没找到方法。。。
笨办法:lol
{x^2/y^2 + x^2/z^2 + y^2/x^2 + y^2/z^2 + z^2/x^2 + z^2/y^2 - c,
x + y + z -
d(*截平面*)} /. ({x, y,
z} // {#,(*正交旋转*){{Sqrt, 0,
1/Sqrt}, {-(1/Sqrt), 1/Sqrt,
1/Sqrt}, {-(1/Sqrt), -(1/Sqrt),
1/Sqrt}}.#} & // Transpose //
Rule @@ # & /@ # &) // #[] /.
Solve[#[] == 0, z][] & // Factor // Numerator //
FactorTermsList[#][] & // # /. {x -> Cos[\] r,
y -> Sin[\] r} & // Collect[#, r, FullSimplify] &
% // # /. {d -> 1, c -> 9}(*赋值*)& //
ParallelTable[{Cos[\] r, Sin[\] r} /.
NSolve[# == 0, r, Reals], {\, 10^-4 2 \, 2 \,
10^-4 2 \}] & // Join @@ # & //
ListPlot[#, PlotStyle -> PointSize, AspectRatio -> 1,
PlotRange -> All] & //
Show[#, {{Sqrt, 0, 1/Sqrt}, {-(1/Sqrt), 1/Sqrt,
1/Sqrt}, {-(1/Sqrt), -(1/Sqrt), 1/Sqrt}}.{{1, 0,
0}, {0, 1, 0}, {0, 0, 1}} // #[] & //
Append[#, #[]] & //
ListLinePlot[#, PlotStyle -> Red, AspectRatio -> 1] &,
AspectRatio -> 1] & 终于画出来了。主要是旋转矩阵的计算。
参考Rodrigues变换: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
from = {0, 0, 1}; to = {1/3, 1/3, 1/3};
RotationTransform, Cross]
\[\text{TransformationFunction}\left[\left(
\begin{array}{cccc}
\frac{1}{6} \left(\sqrt{3}+3\right) & \frac{1}{6} \left(\sqrt{3}-3\right) & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{6} \left(\sqrt{3}-3\right) & \frac{1}{6} \left(\sqrt{3}+3\right) & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)\right]\]
c = 10; n = 3; z = 5;
from = {0, 0, 1}; to = {1/3, 1/3, 1/3};
f = Function[{x, y, z}, x^2/y^2 + x^2/z^2 + y^2/x^2 + y^2/z^2 + z^2/x^2 + z^2/y^2];
ContourPlot[ f @@ (RotationTransform, Cross][{x, y, z}]) == c, {x, -n, n}, {y, -n, n}]
\[\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{x^2}{z^2}+\frac{z^2}{x^2}+\frac{z^2}{y^2}+\frac{y^2}{z^2} \]
经过旋转后的方程是
\[\frac{6 \left(4 x^6+4 y^6+4 z^6+3 x^5 y+3 x y^5+12 x^4 y^2-10 x^3 y^3+12 x^2 y^4+12 z^4 \left(x^2+y^2\right)-8 z^3 (x+y) \left(x^2-4 x y+y^2\right)-3 z (x+y) \left(x^2+y^2\right) \left(x^2-4 x y+y^2\right)\right)}{(x+y-z)^2 \left(x^2-2 z (x+y)-4 x y+y^2-2 z^2\right)^2}\]
这个可能 是新的六次曲线,在mathworld上没搜到:
http://mathworld.wolfram.com/AlgebraicCurve.html 我们现在直接通过坐标系硬算得到:
我们建立坐标系,以B点为原点,C点位于x正半轴上,即
\(A,B,C\)
约定:\(AB=c,AC=b,BC=a, 16s^2=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
我们根据mathe在
https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=15835&pid=78321&fromuid=1455
的描述可以得到
若三角形内一点\(P(x_0,y_0)\),另一点\(P'(x,y)\)满足
\(-ab^2yy_0+ac^2yy_0+a^2sy+a^2sy_0-2asxy_0-2asx_0y+b^2sy+b^2sy_0-c^2sy-c^2sy_0-4as^2+4s^2x+4s^2x_0=0\)
\(3a^4yy_0+2a^2b^2yy_0-2a^2c^2yy_0-b^4yy_0+2b^2c^2yy_0-c^4yy_0+4a^2sxy_0+4a^2sx_0y-4b^2sxy_0-4b^2sx_0y+4c^2sxy_0+4c^2sx_0y-16s^2xx_0=0\)
在直线\(y=kx+t\)上运动,则另一点\(P'\)的运动方程
\(-3a^6ksy^2-5a^4b^2ksy^2+5a^4c^2ksy^2-a^2b^4ksy^2+2a^2b^2c^2ksy^2-a^2c^4ksy^2+b^6ksy^2-3b^4c^2ksy^2+3b^2c^4ksy^2-c^6ksy^2+12a^5ks^2y-6a^5sty^2-16a^4ks^2xy+8a^3b^2ks^2y-8a^3c^2ks^2y-8a^2b^2ks^2xy+8a^2c^2ks^2xy-4ab^4ks^2y-2ab^4sty^2+8ab^2c^2ks^2y+4ab^2c^2sty^2-4ac^4ks^2y-2ac^4sty^2+8b^4ks^2xy-16b^2c^2ks^2xy+8c^4ks^2xy+8a^4s^2ty-4a^4s^2y^2+16a^3ks^3x+8a^2b^2s^2ty-8a^2c^2s^2ty-16a^2ks^3x^2-16ab^2ks^3x-16ab^2s^2txy+16ac^2ks^3x+16ac^2s^2txy+4b^4s^2y^2-8b^2c^2s^2y^2+16b^2ks^3x^2+4c^4s^2y^2-16c^2ks^3x^2+16a^3s^3y+32a^2s^3tx-16ab^2s^3y+16ac^2s^3y-32as^3tx^2+32b^2s^3xy-32c^2s^3xy-64as^4x+64s^4x^2=0\)
若令直线通过三角形ABC的重心,即
\(t=-\frac{3a^2k-b^2k+c^2k-4s}{6a}\)
可以得到P'的运动方程
\(-9a^4b^2ky^2+9a^4c^2ky^2+b^6ky^2-3b^4c^2ky^2+3b^2c^4ky^2-c^6ky^2+12a^5ksy-24a^4ksxy+8a^3b^2ksy-8a^3c^2ksy-4ab^4ksy+8ab^2c^2ksy-4ac^4ksy+8b^4ksxy-16b^2c^2ksxy+8c^4ksxy-12a^4sy^2-16ab^2ks^2x+16ac^2ks^2x+4b^4sy^2-8b^2c^2sy^2+16b^2ks^2x^2+4c^4sy^2-16c^2ks^2x^2+32a^3s^2y-16ab^2s^2y+16ac^2s^2y+32b^2s^2xy-32c^2s^2xy-64as^3x+64s^3x^2=0\)
例如:取\({a=3,b=4,c=5,s=6,k=\frac{1}{2},t=\frac{1}{2}}\)可以得到
\(41472x^2-54432xy-5832y^2-124416x+186624y=0\)
见下图:
若我们令\(P\)是围着三角形重心为圆心,\(r\)为半径的圆上运动,则\(P'\)的运动方程为:
\(81a^{10}r^2y^4-81a^8b^4y^4+162a^8b^2c^2y^4-81a^8c^4y^4+54a^6b^4r^2y^4-108a^6b^2c^2r^2y^4+54a^6c^4r^2y^4+18a^4b^8y^4-72a^4b^6c^2y^4+108a^4b^4c^4y^4-72a^4b^2c^6y^4+18a^4c^8y^4+9a^2b^8r^2y^4-36a^2b^6c^2r^2y^4+54a^2b^4c^4r^2y^4-36a^2b^2c^6r^2y^4+9a^2c^8r^2y^4-b^12y^4+6b^10c^2y^4-15b^8c^4y^4+20b^6c^6y^4-15b^4c^8y^4+6b^2c^10y^4-c^12y^4+216a^9b^2sy^3-216a^9c^2sy^3-216a^9r^2sy^3-432a^8b^2sxy^3+432a^8c^2sxy^3+144a^7b^4sy^3-288a^7b^2c^2sy^3-216a^7b^2r^2sy^3+144a^7c^4sy^3+216a^7c^2r^2sy^3+432a^6b^2r^2sxy^3-432a^6c^2r^2sxy^3-96a^5b^6sy^3+288a^5b^4c^2sy^3-72a^5b^4r^2sy^3-288a^5b^2c^4sy^3+144a^5b^2c^2r^2sy^3+96a^5c^6sy^3-72a^5c^4r^2sy^3+192a^4b^6sxy^3-576a^4b^4c^2sxy^3+576a^4b^2c^4sxy^3-192a^4c^6sxy^3-16a^3b^8sy^3+64a^3b^6c^2sy^3-72a^3b^6r^2sy^3-96a^3b^4c^4sy^3+216a^3b^4c^2r^2sy^3+64a^3b^2c^6sy^3-216a^3b^2c^4r^2sy^3-16a^3c^8sy^3+72a^3c^6r^2sy^3+144a^2b^6r^2sxy^3-432a^2b^4c^2r^2sxy^3+432a^2b^2c^4r^2sxy^3-144a^2c^6r^2sxy^3+8ab^10sy^3-40ab^8c^2sy^3+80ab^6c^4sy^3-80ab^4c^6sy^3+40ab^2c^8sy^3-8ac^10sy^3-16b^10sxy^3+80b^8c^2sxy^3-160b^6c^4sxy^3+160b^4c^6sxy^3-80b^2c^8sxy^3+16c^10sxy^3-144a^10s^2y^2+576a^9s^2xy^2-192a^8b^2s^2y^2+192a^8c^2s^2y^2+144a^8r^2s^2y^2-576a^8s^2x^2y^2-144a^8s^2y^4+384a^7b^2s^2xy^2-384a^7c^2s^2xy^2-864a^7r^2s^2xy^2+32a^6b^4s^2y^2-64a^6b^2c^2s^2y^2+288a^6b^2r^2s^2y^2+32a^6c^4s^2y^2-288a^6c^2r^2s^2y^2+864a^6r^2s^2x^2y^2-672a^5b^4s^2xy^2+1344a^5b^2c^2s^2xy^2-576a^5b^2r^2s^2xy^2-672a^5c^4s^2xy^2+576a^5c^2r^2s^2xy^2+64a^4b^6s^2y^2-192a^4b^4c^2s^2y^2+144a^4b^4r^2s^2y^2+672a^4b^4s^2x^2y^2+96a^4b^4s^2y^4+192a^4b^2c^4s^2y^2-288a^4b^2c^2r^2s^2y^2-1344a^4b^2c^2s^2x^2y^2-192a^4b^2c^2s^2y^4-64a^4c^6s^2y^2+144a^4c^4r^2s^2y^2+672a^4c^4s^2x^2y^2+96a^4c^4s^2y^4-128a^3b^6s^2xy^2+384a^3b^4c^2s^2xy^2-864a^3b^4r^2s^2xy^2-384a^3b^2c^4s^2xy^2+1728a^3b^2c^2r^2s^2xy^2+128a^3c^6s^2xy^2-864a^3c^4r^2s^2xy^2-16a^2b^8s^2y^2+64a^2b^6c^2s^2y^2-96a^2b^4c^4s^2y^2+864a^2b^4r^2s^2x^2y^2+64a^2b^2c^6s^2y^2-1728a^2b^2c^2r^2s^2x^2y^2-16a^2c^8s^2y^2+864a^2c^4r^2s^2x^2y^2+96ab^8s^2xy^2-384ab^6c^2s^2xy^2+576ab^4c^4s^2xy^2-384ab^2c^6s^2xy^2+96ac^8s^2xy^2-96b^8s^2x^2y^2-16b^8s^2y^4+384b^6c^2s^2x^2y^2+64b^6c^2s^2y^4-576b^4c^4s^2x^2y^2-96b^4c^4s^2y^4+384b^2c^6s^2x^2y^2+64b^2c^6s^2y^4-96c^8s^2x^2y^2-16c^8s^2y^4+768a^7s^3y^3+384a^6b^2s^3xy-384a^6c^2s^3xy+1152a^6r^2s^3xy-1152a^5b^2s^3x^2y-384a^5b^2s^3y^3+1152a^5c^2s^3x^2y+384a^5c^2s^3y^3-1152a^5r^2s^3x^2y+256a^4b^4s^3xy-512a^4b^2c^2s^3xy+1152a^4b^2r^2s^3xy+768a^4b^2s^3x^3y+768a^4b^2s^3xy^3+256a^4c^4s^3xy-1152a^4c^2r^2s^3xy-768a^4c^2s^3x^3y-768a^4c^2s^3xy^3-256a^3b^4s^3x^2y-256a^3b^4s^3y^3+512a^3b^2c^2s^3x^2y+512a^3b^2c^2s^3y^3-3456a^3b^2r^2s^3x^2y-256a^3c^4s^3x^2y-256a^3c^4s^3y^3+3456a^3c^2r^2s^3x^2y-128a^2b^6s^3xy+384a^2b^4c^2s^3xy-384a^2b^2c^4s^3xy+2304a^2b^2r^2s^3x^3y+128a^2c^6s^3xy-2304a^2c^2r^2s^3x^3y+384ab^6s^3x^2y+128ab^6s^3y^3-1152ab^4c^2s^3x^2y-384ab^4c^2s^3y^3+1152ab^2c^4s^3x^2y+384ab^2c^4s^3y^3-384ac^6s^3x^2y-128ac^6s^3y^3-256b^6s^3x^3y-256b^6s^3xy^3+768b^4c^2s^3x^3y+768b^4c^2s^3xy^3-768b^2c^4s^3x^3y-768b^2c^4s^3xy^3+256c^6s^3x^3y+256c^6s^3xy^3-1024a^6s^4y^2-1536a^5s^4xy^2+1024a^4b^2s^4y^2-1024a^4c^2s^4y^2+2304a^4r^2s^4x^2+1536a^4s^4x^2y^2-2048a^3b^2s^4xy^2+2048a^3c^2s^4xy^2-4608a^3r^2s^4x^3-256a^2b^4s^4x^2-256a^2b^4s^4y^2+512a^2b^2c^2s^4x^2+512a^2b^2c^2s^4y^2-256a^2c^4s^4x^2-256a^2c^4s^4y^2+2304a^2r^2s^4x^4+512ab^4s^4x^3+1536ab^4s^4xy^2-1024ab^2c^2s^4x^3-3072ab^2c^2s^4xy^2+512ac^4s^4x^3+1536ac^4s^4xy^2-256b^4s^4x^4-1536b^4s^4x^2y^2+512b^2c^2s^4x^4+3072b^2c^2s^4x^2y^2-256c^4s^4x^4-1536c^4s^4x^2y^2+4096a^4s^5xy-4096a^3s^5x^2y-2048a^2b^2s^5xy+2048a^2c^2s^5xy+6144ab^2s^5x^2y-6144ac^2s^5x^2y-4096b^2s^5x^3y+4096c^2s^5x^3y-4096a^2s^6x^2+8192as^6x^3-4096s^6x^4=0\)
我们取\(a=3,b=4,c=5,s=6\)得到
\(26873856r^2x^4-40310784r^2x^3y+45349632r^2x^2y^2-22674816r^2xy^3+8503056r^2y^4-161243136r^2x^3+120932352r^2x^2y-90699264r^2xy^2+241864704r^2x^2-217976832x^4+206032896x^3y+10077696xy^3-49128768y^4+1307860992x^3-1908043776x^2y+463574016xy^2+362797056y^3-1961791488x^2+3869835264xy-2176782336y^2=0\)
我们进一步取\(r=\frac{k}{10},k=1..8\) 画图得到
其中\(k=3\)时即\(r=\frac{3}{10}\) 方程
\(-5388954624x^4+5060123136x^3y+102036672x^2y^2+200924064xy^3-1209087324y^4+32333727744x^3-47428996608x^2y+11385277056xy^2+9069926400y^3-48500591616x^2+96745881600xy-54419558400y^2=0\)
图形神似老胡的六次曲线
难道这里的\(r\)与不动点集有关系?