行列式为平方数的平方元素矩阵
平方元素矩阵,顾名思义,就是其元素全都为平方数的矩阵。可以通过行列互易对角化的矩阵为平凡解。我们要求非平凡解。
进一步,可以拓宽数域到有理数的平方数。
不仅要求非平凡解,甚至可以要求全部元素非零,称为无零解。
二阶易解,三阶的呢?:tip:
Det[( {
{Subscript, Subscript, Subscript},
{Subscript, Subscript, Subscript},
{Subscript, Subscript, Subscript}
} )]
主对角线元素为平方数的三角阵
无零解
1,1,11,4,1
1,1,4
结果是9.
其实只要其他的都固定,留一个元素作为未知数x,结果是x的线性函数,解一个二次同余方程就行了。 所以lsr的方案可以扩展到任意奇数阶无零解 第二行前两个数选16,25,第三行开始主对角线为4,所有其它元素为1,对偶数阶都可行
无零解
SL := Piecewise[{{Reverse]],
First] > Last]},
{X, First] < Last]},
{Piecewise[{
{Reverse]],
First] > Last]},
{X, First] <= Last]}}],
First] == Last]}
}]
Llst = {{{1, 1, 1}, {1, 4, 1}, {1, 1, 4}}, {{1, 1, 1}, {1, 4, 4}, {1,
4, 16}}, {{1, 1, 1}, {1, 9, 1}, {1, 1, 9}}, {{1, 1, 1}, {1, 9,
25}, {1, 25, 81}}, {{1, 1, 1}, {1, 16, 4}, {1, 4, 4}}, {{1, 1,
1}, {1, 81, 25}, {1, 25, 9}}, {{1, 1, 4}, {1, 9, 16}, {4, 16,
36}}, {{1, 4, 1}, {4, 36, 16}, {1, 16, 9}}, {{1, 4, 4}, {4, 1,
4}, {4, 4, 1}}, {{1, 4, 4}, {4, 1, 4}, {4, 4, 4}}, {{1, 4,
4}, {4, 4, 4}, {4, 4, 1}}, {{1, 4, 4}, {4, 9, 16}, {4, 16,
9}}, {{1, 4, 4}, {4, 25, 4}, {4, 4, 36}}, {{1, 4, 4}, {4, 25,
16}, {4, 16, 25}}, {{1, 4, 4}, {4, 36, 4}, {4, 4, 25}}, {{1, 9,
9}, {9, 1, 9}, {9, 9, 16}}, {{1, 9, 9}, {9, 16, 9}, {9, 9,
1}}, {{1, 9, 9}, {9, 16, 49}, {9, 49, 64}}, {{1, 9, 9}, {9, 64,
49}, {9, 49, 16}}, {{4, 1, 1}, {1, 1, 1}, {1, 1, 4}}, {{4, 1,
1}, {1, 4, 1}, {1, 1, 1}}, {{4, 1, 4}, {1, 1, 1}, {4, 1,
16}}, {{4, 1, 4}, {1, 49, 25}, {4, 25, 16}}, {{4, 4, 1}, {4, 16,
1}, {1, 1, 1}}, {{4, 4, 1}, {4, 16, 25}, {1, 25, 49}}, {{4, 4,
4}, {4, 1, 4}, {4, 4, 1}}, {{4, 4, 4}, {4, 9, 1}, {4, 1,
9}}, {{4, 4, 4}, {4, 9, 16}, {4, 16, 36}}, {{4, 4, 4}, {4, 36,
16}, {4, 16, 9}}, {{4, 4, 16}, {4, 9, 25}, {16, 25, 81}}, {{4, 9,
9}, {9, 4, 36}, {9, 36, 4}}, {{4, 9, 36}, {9, 4, 9}, {36, 9,
4}}, {{4, 16, 4}, {16, 81, 25}, {4, 25, 9}}, {{4, 36, 9}, {36, 4,
9}, {9, 9, 4}}, {{9, 1, 1}, {1, 1, 1}, {1, 1, 9}}, {{9, 1,
1}, {1, 9, 1}, {1, 1, 1}}, {{9, 1, 4}, {1, 9, 4}, {4, 4,
4}}, {{9, 1, 16}, {1, 1, 4}, {16, 4, 36}}, {{9, 1, 25}, {1, 1,
1}, {25, 1, 81}}, {{9, 4, 1}, {4, 4, 4}, {1, 4, 9}}, {{9, 4,
16}, {4, 1, 4}, {16, 4, 9}}, {{9, 4, 16}, {4, 4, 4}, {16, 4,
36}}, {{9, 4, 25}, {4, 4, 16}, {25, 16, 81}}, {{9, 16, 1}, {16,
36, 4}, {1, 4, 1}}, {{9, 16, 4}, {16, 9, 4}, {4, 4, 1}}, {{9, 16,
4}, {16, 36, 4}, {4, 4, 4}}, {{9, 16, 16}, {16, 36, 16}, {16,
16, 49}}, {{9, 16, 16}, {16, 49, 16}, {16, 16, 36}}, {{9, 25,
1}, {25, 81, 1}, {1, 1, 1}}, {{9, 25, 4}, {25, 81, 16}, {4, 16,
4}}, {{16, 1, 4}, {1, 1, 1}, {4, 1, 4}}, {{16, 4, 1}, {4, 4,
1}, {1, 1, 1}}, {{16, 4, 25}, {4, 4, 1}, {25, 1, 49}}, {{16, 9,
9}, {9, 1, 9}, {9, 9, 1}}, {{16, 9, 49}, {9, 1, 9}, {49, 9,
64}}, {{16, 25, 4}, {25, 49, 1}, {4, 1, 4}}, {{16, 49, 9}, {49,
64, 9}, {9, 9, 1}}, {{25, 4, 4}, {4, 1, 4}, {4, 4, 36}}, {{25, 4,
4}, {4, 36, 4}, {4, 4, 1}}, {{25, 4, 16}, {4, 1, 4}, {16, 4,
25}}, {{25, 16, 4}, {16, 25, 4}, {4, 4, 1}}, {{36, 4, 4}, {4, 1,
4}, {4, 4, 25}}, {{36, 4, 4}, {4, 25, 4}, {4, 4, 1}}, {{36, 4,
16}, {4, 1, 1}, {16, 1, 9}}, {{36, 4, 16}, {4, 4, 4}, {16, 4,
9}}, {{36, 16, 4}, {16, 9, 1}, {4, 1, 1}}, {{36, 16, 4}, {16, 9,
4}, {4, 4, 4}}, {{36, 16, 16}, {16, 9, 16}, {16, 16, 49}}, {{36,
16, 16}, {16, 49, 16}, {16, 16, 9}}, {{49, 1, 25}, {1, 4,
4}, {25, 4, 16}}, {{49, 16, 16}, {16, 9, 16}, {16, 16,
36}}, {{49, 16, 16}, {16, 36, 16}, {16, 16, 9}}, {{49, 25,
1}, {25, 16, 4}, {1, 4, 4}}, {{64, 9, 49}, {9, 1, 9}, {49, 9,
16}}, {{64, 49, 9}, {49, 16, 9}, {9, 9, 1}}, {{81, 1, 25}, {1, 1,
1}, {25, 1, 9}}, {{81, 16, 25}, {16, 4, 4}, {25, 4, 9}}, {{81,
25, 1}, {25, 9, 1}, {1, 1, 1}}, {{81, 25, 16}, {25, 9, 4}, {16,
4, 4}}};
MatrixForm /@ Llst;
MatrixForm /@ SL /@ DeleteDuplicatesBy &]
页:
[1]