hujunhua 发表于 2020-4-21 23:24
不了解 3# 的那个恒等式的话,也不要这样一头扎进去硬闯,可以作代换
`A'=\pi-A, B'=\pi/2-B, C'=\pi/2- ...
\(\sin^2(\pi-A)=\sin^2(\pi/2-B)+\sin^2(\pi/2-C)-2\sin(\pi/2-B)\sin(\pi/2-C)\cos(\pi-A)\)
\(\sin^2(\pi/2-B)+\sin^2(\pi/2-C)=\sin^2(\pi-A)+2\sin(\pi/2-B)\sin(\pi/2-C)\cos(\pi-A)\)
\(\cos^2B+\cos^2C=\sin^2A-2\cos B \cos C\cos A\)
\(\cos^2B+\cos^2C=\sin^2A-\sin A\cos A=\sin^2A-\frac{1}{2}\sin2A\)
求:\(\sin^2A-\frac{1}{n}\sin2A\)的最大值 S 。
n= 1 时:S =\(\frac{1+\sqrt{1^2+4}}{1*2}\)
n= 2 时:S =\(\frac{2+\sqrt{2^2+4}}{2*2}=\frac{1+\sqrt{2}}{2}\) (主帖)
n= 3 时:S =\(\frac{3+\sqrt{3^2+4}}{3*2}\)
n= 4 时:S =\(\frac{4+\sqrt{4^2+4}}{4*2}\)
n= 5 时:S =\(\frac{5+\sqrt{5^2+4}}{5*2}\)
n= 6 时:S =\(\frac{6+\sqrt{6^2+4}}{6*2}\)
琢磨不定:这些最大值 S 应该怎么把她们连贯起来?
王守恩 发表于 2020-4-22 18:09
\(\sin^2(\pi-A)=\sin^2(\pi/2-B)+\sin^2(\pi/2-C)-2\sin(\pi/2-B)\sin(\pi/2-C)\cos(\pi-A)\)
\(\s ...
如果你的推理是正确的,即:
n等于任一正整数k时,S=(k+√(k*k+4))/(2*k),则
n=1时,S最大,即S=(1+√(5))/2
这是因为,n增大,S必减少(S是n的递减函数,导函数小于0)。 本帖最后由 zeroieme 于 2020-4-23 15:51 编辑
Sin^2-1/n Sin//#/.A->2ArcTan&//TrigExpand//#/.Solve==0,x]&//FullSimplify//Union
\(\left\{\frac{\sqrt{n^2+4}+n}{2 n},-\frac{2}{n^2+\sqrt{n^2+4} n}\right\}\)
最大与最小值 markfang2050 发表于 2019-4-23 22:33
解答:
需要简单说下cosbcosc不等于零!
hujunhua 发表于 2020-4-21 22:28
@zeroieme
在2#得到`\D v=\frac{6-2q}{q^2-2q+5}`后,可以化成 \(vq^2-2(v-1)q+(5v-6)=0\)
谢谢 hujunhua 指明道路!虽是马后炮,还是放一个。
\(\sin A=\sin(B+C)=2\cos B\cos C\to2=\frac{\sin(B+C)}{\cos B\cos C}=\tan B+\tan C=(1+x)+(1-x)\)
\(v=\cos^2 B+\cos^2 C=\frac{1}{1+\tan^2 B}+\frac{1}{1+\tan^2 C}=\frac{1}{1+(1+x)^2}+\frac{1}{1+(1-x)^2}=\frac{2x^2+4}{x^4+4}\)
\(v=\frac{2x^2+4}{x^4+4}\to vx^4-2x^2+4(v-1)=0\ \ △=(-2)^2-4*v*4(v-1)=0\ \ v=\frac{\sqrt{2}+1}{2}\)
7楼的疑问也说一下。
n= 1 时:\(v =\frac{1+\sqrt{1^2+4}}{1∗2}\)已知条件:\(\sin A=1\cos B\cos C\)
n= 2 时:\(v =\frac{2+\sqrt{2^2+4}}{2∗2}\)已知条件:\(\sin A=2\cos B\cos C\) (主帖)
n= 3 时:\(v =\frac{3+\sqrt{3^2+4}}{3∗2}\)已知条件:\(\sin A=3\cos B\cos C\)
n= 4 时:\(v =\frac{4+\sqrt{4^2+4}}{4∗2}\)已知条件:\(\sin A=4\cos B\cos C\)
n= 5 时:\(v =\frac{5+\sqrt{5^2+4}}{5∗2}\)已知条件:\(\sin A=5\cos B\cos C\)
n= 6 时:\(v =\frac{6+\sqrt{6^2+4}}{6∗2}\)已知条件:\(\sin A=6\cos B\cos C\) 本帖最后由 mathematica 于 2020-4-24 13:31 编辑
Clear["Global`*"];
(*拉格朗日乘子法*)
f=1/(1+x^2)+1/(1+y^2)+a*(x+y-2)
(*求导数*)
fx=D//FullSimplify
fy=D//FullSimplify
fa=D//FullSimplify
(*求解零点*)
ans=Solve[{fx,fy,fa}=={0,0,0},{x,y,a}]//FullSimplify//ToRadicals;
Grid
N[%,10]
(*带入得到函数值*)
FullSimplify
N[%,10]
求解零点
\[\begin{array}{ccc}
x\to 1 & y\to 1 & a\to \frac{1}{2} \\
x\to 1-\sqrt{2 \left(\sqrt{2}-1\right)} & y\to \sqrt{2 \left(\sqrt{2}-1\right)}+1 & a\to \frac{1}{4 \sqrt{2}} \\
x\to \sqrt{2 \left(\sqrt{2}-1\right)}+1 & y\to 1-\sqrt{2 \left(\sqrt{2}-1\right)} & a\to \frac{1}{4 \sqrt{2}} \\
x\to 1-i \sqrt{2 \left(\sqrt{2}+1\right)} & y\to 1+i \sqrt{2 \left(\sqrt{2}+1\right)} & a\to -\frac{1}{4 \sqrt{2}} \\
x\to 1+i \sqrt{2 \left(\sqrt{2}+1\right)} & y\to 1-i \sqrt{2 \left(\sqrt{2}+1\right)} & a\to -\frac{1}{4 \sqrt{2}} \\
\end{array}\]
数值化
\[
\begin{array}{ccc}
x\to 1.000000000 & y\to 1.000000000 & a\to 0.5000000000 \\
x\to 0.08982027888 & y\to 1.910179721 & a\to 0.1767766953 \\
x\to 1.910179721 & y\to 0.08982027888 & a\to 0.1767766953 \\
x\to 1.000000000-2.197368227 i & y\to 1.000000000+2.197368227 i & a\to -0.1767766953 \\
x\to 1.000000000+2.197368227 i & y\to 1.000000000-2.197368227 i & a\to -0.1767766953 \\
\end{array}
\]
带入函数得到函数值
\[\left\{1,\frac{1}{2}+\frac{1}{\sqrt{2}},\frac{1}{2}+\frac{1}{\sqrt{2}},\frac{1}{2}-\frac{1}{\sqrt{2}},\frac{1}{2}-\frac{1}{\sqrt{2}}\right\}\]
数值化
\[\{1.000000000,1.207106781,1.207106781,-0.2071067812,-0.2071067812\}\]
为什么我感觉与这儿的非常的像?
已知a+b=1,求ab(a^4+b^4)的最大值
https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=16900&pid=84174&fromuid=865
至少求出来的拉格朗日零点很像,
两个值相等,然后两个对称的实数值,两个对称的复数值
页:
1
[2]