海盗分珠宝别传
从1个论坛中看到这题,觉得挺难的,好像无处下手。----------------------------------------------
4个海盗分100珠宝:
先抽签决定自己的号码(1,2,3,4)
1、1号先提分配方案:然后大家4人进行表决,赞成的人数为n,反对的人数为m,若n>=m,那么分配方案通过,否则,黑板上划上m-n个横(m-n=1,划1横,m-n=2,划2横,等等)。
2、若没通过,按照号码顺序轮流提方案表决,若某方案被通过就结束(4号方案没通过,再从1号继续)。
3、若对某人的方案表决没通过,在黑板上划上相应笔的横后黑板上的总横数大于10,那么就将这个人扔入大海。黑板上的横清零,剩下的人继续进行。
----------------------------------------------
假设每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
那么最终的分配方案是什么?
----------------------------------------------
说明:对方案的表态可以弃权。这时n+m<4 。但只要n>=m,方案就通过。
表态的顺序是 1号的方案,按2,3,4,1顺序先后表态。
2号的方案,按3,4,1,2顺序先后表态。
3号的方案,按4,1,2,3 顺序先后表态。
4号的方案,按1,2,3,4顺序先后表态。
每个方案的提出者都是最后一个表态。 转载请给出转载链接,谢谢!
:tip: 如果对方那里已有比较好的结论,而又不想让大家先入为主,可以仅将链接设置成“回复可见”模式。 貌似跟博弈里的纳什平衡扯上了
The Pirate Game - A Logic Puzzle http://research.cs.queensu.ca/CompLing/puzzles/pirates.gold
可以搜出一大把来,貌似还被做成了小游戏 关于这道题还没有一点进展。
原帖:http://bbs.mf8.com.cn/viewthread.php?tid=37927&extra=page%3D1 模型还有些问题
有时候海盗会遇上多种不同的选择方案,而他的个人结果相同.(但是这时他的选择会影响其他人)
这时就需要追加条件,这个时候海盗会随机(等概率的)选择一个方案.
而"很理智"这个说明在引入随机性以后对于某些情况还是很难判断.
比如说一个海盗面临三种不同的选择:
i)可以50%的概率得到100个珠宝和0.00001的概率死亡
ii)可以得到50个珠宝和0.00001的概率死亡
iii)得不到珠宝也不会死亡
我们无法得知理智的海盗会选择哪一个(也许第一个方案???不然也不会去做海盗:)) 估计他们个个都聪明绝顶,并且在确保自身安全的前提下力争获得各自最大收益吧。 确定模型以后,讨论这个问题就不会很难了.
我觉得一个比较合理的模型是
i)先确保自己死亡的概率最小
ii)在死亡概率相同的情况下确保最大受益
iii)在前两项概率相同的情况下让其他人的死亡概率之和尽量大
iv)在前三项概率相同的情况下如果面临多个方案,等概率随机选择一个方案
我们要根据黑板上笔画数进行逆推.先看总横数已经不小于10画的情况.这时,只要被否决了就要死亡.
得出这个情况的模型后,再看9画,8画等情况. 我来谈谈我的看法:
假设到了第n轮,轮到第x号海盗提方案,这时若他的方案不被通过,黑板上的横肯定会超过10画,那么他肯定会被扔入大海。所以在上一轮(第n-1轮),x号囚徒表决第x-1号海盗的方案时,为了活命,他肯定投赞成票。这样x-1号海盗的方案就会是他100珠宝,其他人都是0,x号海盗无条件赞成。那么在上一轮(n-2轮),x-2号海盗就可以提方案,他99珠宝,x-3号1珠宝,这样x-3号就会赞成,否则,下一轮他一颗珠宝都得不到。依次往上推。
-------------
关键是 若大家都是最正确的选择,那么谁会是x号海盗。
只有先假设所有的方案都不被通过的条件下,推导若大家都是正确的选择,谁最先被扔入大海。
才能倒推出结论。
毕竟生命是最珍贵的。
最后的方案肯定是大家都活命。否则的话死亡的海盗在之前早就同意别人的方‘案了。 但推导时,正如mathe所说的,大家的决定相互影响,不知如何入手。
至于mathe提到在很难判断选择时引入随机的方法。
前提是随机的选择只影响别人的结果,不影响自己。
那么当时你怎么确定这时不影响自己,只影响别人,是基于什么判断条件。
毕竟你影响了别人,而后别人影响了你,最终反过来影响自己
页:
[1]