假设三者构成边长为1的正三角形,那么它们将在t=2/3时相遇:
k = 1;t0 = 2/3;
s = NDSolve[{
(y1 - y2) == (x1 - x2) y1'/x1',
(y2 - y3) == (x2 - x3) y2'/x2',
(y3 - y1) == (x3 - x1) y3'/x3',
x1'^2 + y1'^2 == k,
x2'^2 + y2'^2 == k,
x3'^2 + y3'^2 == k,
x1 == 0, y1 == 0, x2 == 1, y2 == 0, x3 == 1/2,y3 == Sqrt/2}, {x1, y1, x2, y2, x3, y3}, {t, 0, t0}];
ParametricPlot[ Evaluate[{x1, y1, x2, y2, x3, y3} /. s], {t, 0,t0}]
每个点有8个分支,代表了三个平方和方程表示的八个方向(即A靠近或远离B等等),不知道有没有办法可以选定方向:
页:
1
[2]