关于自然数的歌德巴赫解的个数问题
对于较大的自然数N,根据歌德巴赫猜想,若N是偶数,那么应该至少存在一组素数(2个素数),它们的和等于N。
若N是奇数,那么应该至少存在一组素数(3个素数),它们的和等于N。
----------------
现在把这样的一组素数称作N的一个歌德巴赫解。
用F(N)来表示N所有的不同歌德巴赫解的个数。
比如10=3+7=5+5,所以F(10)=2
比如13=3+3+7=3+5+5,所以F(13)=2。
-------------
那么 对于 $N\in[10^k,10^(k+1))$,设这个范围内F(N)的最小值是p,最大值为q。
是否 随着k的增大,p、q都会增大? 这个很显然应该如此.当然证明比歌德巴赫猜想本身更加难 1# 056254628 本帖最后由 tprime 于 2009-9-8 10:44 编辑
1# 056254628
前者叫偶数猜想, 我的程序能快速算出给定n (n < 10^15)
素数对数(p,q 且 q <= p) 满足p + q = n
欢迎测试
---------------------------------------------------------------
Calculate Goldbach partition G(n) / Twin Prime pairs Pi2(n)
(n < e15), version 5.10
Copyright (c) by Huang Yuanbing 2008-2009
Compiled by GNU/g++ 3.4.5 on 10:35:51 Sep8 2009
OMP = 0, SMOVE = 5, POPCNT = 0, Param.Gap = 2
---------------------------------------------------------------
[-B: Benchmark]
[-H: Help command]
[-U: Unite test data from prime.gn]
[-T: Time print]
[-D: Debug log]
[-P: Progress print]
[-G: Goldbach partition / Twin Prime]
[-S: Size of BlockSize (n)]
[-O: Openmp threads (n 2-64)]
[-C: Cpu L2 Cache Size(n 128-4048)]
[-K: Pattern Gap (n 2 4)]
[-L: List Gn (beg) (end/number) (step)]
------------start G(n)/PI2(n) -----------
G(1000000000) = 2274205 time use 202.77 ms
e10
------------start G(n)/PI2(n) -----------
thread 1: ... 25.76%, total time ~= 1.46 s, ret ~= 18220950
thread 1: ... 51.62%, total time ~= 1.44 s, ret ~= 18215010, error ~= -0.0326%
thread 3: ... 77.47%, total time ~= 1.41 s, ret ~= 18195210, error ~= -0.1087%
G(10000000000) = 18200488 time use 1530.12 ms
g
e9
------------start G(n)/PI2(n) -----------
PI2(1000000000) = 3424506 time use 257.54 ms
页:
[1]