C_n^k+C_n^k-1=C_n+1^k
(1,(x!=0)),(x^2+1,(x=0))
{e^{2x}}
e^{2x}
{sum_{n=0}^{infty}frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}}
\int_0^1 {\frac{{\sin x}}{x}dx}
本帖最后由 chyanog 于 2010-8-24 14:33 编辑
\frac{1}{100}(9045+1010n-5\cos(\pi/n)-\sqrt{50+10\sqrt{5}}(\sin(\frac{1}{5}\pi(8n+1))+\sin(\frac{1}{5}\pi(1-2n)))-\sqrt{50-10\sqrt{5}}(\sin(\frac{2}{5}\pi(3n+1))+\sin(\frac{2}{5}\pi(1-2n)))-5(\sqrt{5}-1)(\cos(\frac{1}{5}\pi(3n+1))+\cos(\frac{1}{5}\pi(1-7n)))-5(1+\sqrt{5})(\cos(\frac{1}{5}\pi(n+2))+\cos(\frac{1}{5}\pi(2-9n))))
太长的 TeX,你可以分成多个 TeX,以便正常显示。
int(x_1^2+y_1^2)dx
\intxdx