$\intxdx$
f(x)=\sum_{n=0}^\infty{f^{(n)}(a)}{n!}(x-a)^n
$f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n $
本帖最后由 G-Spider 于 2010-11-28 23:38 编辑
sum_{n=0}^{infty}frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}}
\pi= \frac{{426880\sqrt {10005} }}{{\sum\limits_{n = 0}^\infty{\frac{{(6n)!(545140134n + 13591409)}}{{{{(n!)}^3}(3n)!{{( - 640320)}^{3n}}}}} }}
本帖最后由 G-Spider 于 2010-11-29 00:04 编辑
\pi=frac{426880\sqrt(10005)}{sum_{n=0}^{infty} frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}} }
代码:\pi=frac{426880\sqrt(10005)}{sum_{n=0}^{infty} frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}} }
修改了n次后,终算成功,可以睡觉了......:victory:
\pi=frac{426880\sqrt(10005)}{sum_{n=0}^{infty} frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}} }
198# binhewu
\pi=frac{426880\sqrt(10005)}{sum_{n=0}^{infty} frac{(6n)!(545140134n+13591409)}{(n!)^3(3n)!(-640320)^{3n}} }
a2+b2=c2