hujunhua 发表于 2017-5-4 22:28:54

四面体的棱长组合计数

【问题】以长度为11,12,13,14,15,16的六条线段为棱,能够搭建多少个不同的四面体?
(镜像对称而不能旋转重合的两个四面体亦视为不同)。

mathe 发表于 2017-5-5 16:01:02

镜像对称的(也就是一个顶点不变,余下三个改变方向的)先看成一样,那么显然总数为${6!}/{4!}=30$种
如果考虑镜像对称的看成不同,每个就可以有两个不同的取向,所以应该$60$种。

hujunhua 发表于 2017-5-5 17:01:10

四面体的棱长组合计数1

@mathe 边长置换数 / 顶点置换数,妙!

有一个同学是这么计数的:边长置换数为6!,一个三棱锥有3个旋转,所以一个四面体有12个旋转,故除去旋转相同的共是6!/12=60种。

两者一样很巧妙啊。

hujunhua 发表于 2017-5-5 17:10:35

四面体的棱长组合计数2

一个同学用的分类统计法:

11,12,13三条边的位置关系可分为以下3种:
一、构成三角形,这类共有2*3!=12种
二、构成Y字形,这是三角形的对偶形,所以也是2*3!=12种
三、构成Z字形,共有2*3*3!=36种
所以总共是12+12+36=60种。

hujunhua 发表于 2017-5-5 17:18:40

四面体的棱长组合计数3

另一个同学的分类统计法:

考虑11边的对边,共有5种选择,剩下的四条边构成一个回路,圆排列数=3!共有5*3!=30种。
再将11与对边互换位置,也有30种。
总计60种。
感觉这个分类比上面的简明。但是好像有问题,跟圆排列有什么关系呢?

nyy 发表于 2023-3-1 13:59:48

6!=720
怎么判断两种排列具有等价的空间结构呢,看它们的体积!
按凯莱行列式计算体积,发现每24个排列共一个体积值,共有30个不同的体积:\[
\left\{21 \sqrt{159},\frac{39 \sqrt{699}}{4},\frac{7 \sqrt{10031}}{3},\frac{5 \sqrt{20135}}{3},\frac{5 \sqrt{23999}}{3},\frac{17 \sqrt{27011}}{12},\frac{13 \sqrt{56459}}{12},\sqrt{73079},\frac{3 \sqrt{111471}}{4},\frac{3 \sqrt{114351}}{4},\frac{5 \sqrt{314135}}{12},\frac{5 \sqrt{385199}}{12},\frac{5 \sqrt{393839}}{12},\frac{5 \sqrt{403079}}{12},\frac{\sqrt{614759}}{3},\frac{\sqrt{1136459}}{4},\frac{\sqrt{7930751}}{12},\frac{\sqrt{8073251}}{12},\frac{\sqrt{9043319}}{12},\frac{\sqrt{9156551}}{12},\frac{\sqrt{9199319}}{12},\frac{\sqrt{9233831}}{12},\frac{\sqrt{9690071}}{12},\frac{\sqrt{9844511}}{12},\frac{\sqrt{9934019}}{12},\frac{\sqrt{10057031}}{12},\frac{\sqrt{10100471}}{12},\frac{\sqrt{10314911}}{12},\frac{\sqrt{10391471}}{12},\frac{\sqrt{10450151}}{12}\right\}
\]考虑镜像对称,因此有30*2=60种不同的四面体。

nyy 发表于 2023-3-1 14:25:32

我已经用穷举法计算过了,对于a b c d e f六条棱,
计算出720种排列,然后计算出所有的排列对应的体积,
然后体积值进行合并,总共得到30种不同的体积!
每种体积都对应24种置换情况

王守恩 发表于 2023-3-4 14:29:15

【问题】以长度为11,12,13,14,15,16的六条线段为棱,能够搭建多少个不同的四面体?
(镜像对称而不能旋转重合的两个四面体亦视为不同)。

把四面体看作一个平放在桌面上的三角形ABC(P是内部一点),

BC=a,CA=b,AB=c,PA=A,PB=B,PC=C

我们总可以让 11=a。

12有3种可能:

12=b,可以有24种变化。

12=c,可以有24种变化。

12=A,可以有24种变化,其中有12种=另外12种。

合计能够搭建24+24+24/2=60个不同的四面体。

王守恩 发表于 2023-3-5 08:08:01

【问题】以长度为11,12,13,14,15,16的六条线段为棱,能够搭建多少个不同的四面体?
(镜像对称而不能旋转重合的两个四面体亦视为不同)。

把四面体看作一个平放在桌面上的三角形ABC(P是内部一点),

BC=a,CA=b,AB=c,PA=A,PB=B,PC=C

我们总可以让 11=a。

12有3种可能。

第1种可能: 12=b,可以有24种变化。
1: a,b,c,A,B,C=11,12,13,14,15,16,
2: a,b,c,A,B,C=11,12,13,14,16,15,
3: a,b,c,A,B,C=11,12,13,15,14,16,
4: a,b,c,A,B,C=11,12,13,15,16,14,
5: a,b,c,A,B,C=11,12,13,16,14,15,
6: a,b,c,A,B,C=11,12,13,16,15,14,
1: a,b,c,A,B,C=11,12,14,13,15,16,
2: a,b,c,A,B,C=11,12,14,13,16,15,
3: a,b,c,A,B,C=11,12,14,15,13,16,
4: a,b,c,A,B,C=11,12,14,15,16,13,
5: a,b,c,A,B,C=11,12,14,16,13,15,
6: a,b,c,A,B,C=11,12,14,16,15,13,
1: a,b,c,A,B,C=11,12,15,13,14,16,
2: a,b,c,A,B,C=11,12,15,13,16,14,
3: a,b,c,A,B,C=11,12,15,14,13,16,
4: a,b,c,A,B,C=11,12,15,14,16,13,
5: a,b,c,A,B,C=11,12,15,16,13,14,
6: a,b,c,A,B,C=11,12,15,16,14,13,
1: a,b,c,A,B,C=11,12,16,13,14,15,
2: a,b,c,A,B,C=11,12,16,13,15,14,
3: a,b,c,A,B,C=11,12,16,14,13,15,
4: a,b,c,A,B,C=11,12,16,14,15,13,
5: a,b,c,A,B,C=11,12,16,15,13,14,
6: a,b,c,A,B,C=11,12,16,15,14,13,

第2种可能: 12=c,可以有24种变化。
1: a,b,c,A,B,C=11,13,12,14,15,16,
2: a,b,c,A,B,C=11,13,12,14,16,15,
3: a,b,c,A,B,C=11,13,12,15,14,16,
4: a,b,c,A,B,C=11,13,12,15,16,14,
5: a,b,c,A,B,C=11,13,12,16,14,15,
6: a,b,c,A,B,C=11,13,12,16,15,14,
1: a,b,c,A,B,C=11,14,12,13,15,16,
2: a,b,c,A,B,C=11,14,12,13,16,15,
3: a,b,c,A,B,C=11,14,12,15,13,16,
4: a,b,c,A,B,C=11,14,12,15,16,13,
5: a,b,c,A,B,C=11,14,12,16,13,15,
6: a,b,c,A,B,C=11,14,12,16,15,13,
1: a,b,c,A,B,C=11,15,12,13,14,16,
2: a,b,c,A,B,C=11,15,12,13,16,14,
3: a,b,c,A,B,C=11,15,12,14,13,16,
4: a,b,c,A,B,C=11,15,12,14,16,13,
5: a,b,c,A,B,C=11,15,12,16,13,14,
6: a,b,c,A,B,C=11,15,12,16,14,13,
1: a,b,c,A,B,C=11,16,12,13,14,15,
2: a,b,c,A,B,C=11,16,12,13,15,14,
3: a,b,c,A,B,C=11,16,12,14,13,15,
4: a,b,c,A,B,C=11,16,12,14,15,13,
5: a,b,c,A,B,C=11,16,12,15,13,14,
6: a,b,c,A,B,C=11,16,12,15,14,13,

第3种可能: 12=A,可以有24种变化,其中有12种=另外12种。
1: a,b,c,A,B,C=11,13,14,12,15,16,
2: a,b,c,A,B,C=11,13,14,12,16,15,
3: a,b,c,A,B,C=11,13,15,12,14,16,
4: a,b,c,A,B,C=11,13,15,12,16,14,
5: a,b,c,A,B,C=11,13,16,12,14,15,
6: a,b,c,A,B,C=11,13,16,12,15,14,
1: a,b,c,A,B,C=11,14,13,12,15,16,
2: a,b,c,A,B,C=11,14,13,12,16,15,
3: a,b,c,A,B,C=11,14,15,12,13,16,
4: a,b,c,A,B,C=11,14,15,12,16,13,
5: a,b,c,A,B,C=11,14,16,12,13,15,
6: a,b,c,A,B,C=11,14,16,12,15,13,

合计能够搭建24+24+24/2=60个不同的四面体。

nyy 发表于 2023-3-7 10:23:11

{{{11,12,13,14,15,16,(39 Sqrt)/4},{11,13,12,14,16,15,(39 Sqrt)/4},{11,15,16,14,12,13,(39 Sqrt)/4},{11,16,15,14,13,12,(39 Sqrt)/4},{12,11,13,15,14,16,(39 Sqrt)/4},{12,13,11,15,16,14,(39 Sqrt)/4},{12,14,16,15,11,13,(39 Sqrt)/4},{12,16,14,15,13,11,(39 Sqrt)/4},{13,11,12,16,14,15,(39 Sqrt)/4},{13,12,11,16,15,14,(39 Sqrt)/4},{13,14,15,16,11,12,(39 Sqrt)/4},{13,15,14,16,12,11,(39 Sqrt)/4},{14,12,16,11,15,13,(39 Sqrt)/4},{14,13,15,11,16,12,(39 Sqrt)/4},{14,15,13,11,12,16,(39 Sqrt)/4},{14,16,12,11,13,15,(39 Sqrt)/4},{15,11,16,12,14,13,(39 Sqrt)/4},{15,13,14,12,16,11,(39 Sqrt)/4},{15,14,13,12,11,16,(39 Sqrt)/4},{15,16,11,12,13,14,(39 Sqrt)/4},{16,11,15,13,14,12,(39 Sqrt)/4},{16,12,14,13,15,11,(39 Sqrt)/4},{16,14,12,13,11,15,(39 Sqrt)/4},{16,15,11,13,12,14,(39 Sqrt)/4}},{{11,12,13,14,16,15,Sqrt/12},{11,13,12,14,15,16,Sqrt/12},{11,15,16,14,13,12,Sqrt/12},{11,16,15,14,12,13,Sqrt/12},{12,11,13,16,14,15,Sqrt/12},{12,13,11,16,15,14,Sqrt/12},{12,14,15,16,11,13,Sqrt/12},{12,15,14,16,13,11,Sqrt/12},{13,11,12,15,14,16,Sqrt/12},{13,12,11,15,16,14,Sqrt/12},{13,14,16,15,11,12,Sqrt/12},{13,16,14,15,12,11,Sqrt/12},{14,12,15,11,16,13,Sqrt/12},{14,13,16,11,15,12,Sqrt/12},{14,15,12,11,13,16,Sqrt/12},{14,16,13,11,12,15,Sqrt/12},{15,11,16,13,14,12,Sqrt/12},{15,12,14,13,16,11,Sqrt/12},{15,14,12,13,11,16,Sqrt/12},{15,16,11,13,12,14,Sqrt/12},{16,11,15,12,14,13,Sqrt/12},{16,13,14,12,15,11,Sqrt/12},{16,14,13,12,11,15,Sqrt/12},{16,15,11,12,13,14,Sqrt/12}},{{11,12,13,15,14,16,(5 Sqrt)/12},{11,13,12,15,16,14,(5 Sqrt)/12},{11,14,16,15,12,13,(5 Sqrt)/12},{11,16,14,15,13,12,(5 Sqrt)/12},{12,11,13,14,15,16,(5 Sqrt)/12},{12,13,11,14,16,15,(5 Sqrt)/12},{12,15,16,14,11,13,(5 Sqrt)/12},{12,16,15,14,13,11,(5 Sqrt)/12},{13,11,12,16,15,14,(5 Sqrt)/12},{13,12,11,16,14,15,(5 Sqrt)/12},{13,14,15,16,12,11,(5 Sqrt)/12},{13,15,14,16,11,12,(5 Sqrt)/12},{14,11,16,12,15,13,(5 Sqrt)/12},{14,13,15,12,16,11,(5 Sqrt)/12},{14,15,13,12,11,16,(5 Sqrt)/12},{14,16,11,12,13,15,(5 Sqrt)/12},{15,12,16,11,14,13,(5 Sqrt)/12},{15,13,14,11,16,12,(5 Sqrt)/12},{15,14,13,11,12,16,(5 Sqrt)/12},{15,16,12,11,13,14,(5 Sqrt)/12},{16,11,14,13,15,12,(5 Sqrt)/12},{16,12,15,13,14,11,(5 Sqrt)/12},{16,14,11,13,12,15,(5 Sqrt)/12},{16,15,12,13,11,14,(5 Sqrt)/12}},{{11,12,13,15,16,14,(5 Sqrt)/12},{11,13,12,15,14,16,(5 Sqrt)/12},{11,14,16,15,13,12,(5 Sqrt)/12},{11,16,14,15,12,13,(5 Sqrt)/12},{12,11,13,16,15,14,(5 Sqrt)/12},{12,13,11,16,14,15,(5 Sqrt)/12},{12,14,15,16,13,11,(5 Sqrt)/12},{12,15,14,16,11,13,(5 Sqrt)/12},{13,11,12,14,15,16,(5 Sqrt)/12},{13,12,11,14,16,15,(5 Sqrt)/12},{13,15,16,14,11,12,(5 Sqrt)/12},{13,16,15,14,12,11,(5 Sqrt)/12},{14,11,16,13,15,12,(5 Sqrt)/12},{14,12,15,13,16,11,(5 Sqrt)/12},{14,15,12,13,11,16,(5 Sqrt)/12},{14,16,11,13,12,15,(5 Sqrt)/12},{15,12,14,11,16,13,(5 Sqrt)/12},{15,13,16,11,14,12,(5 Sqrt)/12},{15,14,12,11,13,16,(5 Sqrt)/12},{15,16,13,11,12,14,(5 Sqrt)/12},{16,11,14,12,15,13,(5 Sqrt)/12},{16,13,15,12,14,11,(5 Sqrt)/12},{16,14,11,12,13,15,(5 Sqrt)/12},{16,15,13,12,11,14,(5 Sqrt)/12}},{{11,12,13,16,14,15,Sqrt/12},{11,13,12,16,15,14,Sqrt/12},{11,14,15,16,12,13,Sqrt/12},{11,15,14,16,13,12,Sqrt/12},{12,11,13,14,16,15,Sqrt/12},{12,13,11,14,15,16,Sqrt/12},{12,15,16,14,13,11,Sqrt/12},{12,16,15,14,11,13,Sqrt/12},{13,11,12,15,16,14,Sqrt/12},{13,12,11,15,14,16,Sqrt/12},{13,14,16,15,12,11,Sqrt/12},{13,16,14,15,11,12,Sqrt/12},{14,11,15,12,16,13,Sqrt/12},{14,13,16,12,15,11,Sqrt/12},{14,15,11,12,13,16,Sqrt/12},{14,16,13,12,11,15,Sqrt/12},{15,11,14,13,16,12,Sqrt/12},{15,12,16,13,14,11,Sqrt/12},{15,14,11,13,12,16,Sqrt/12},{15,16,12,13,11,14,Sqrt/12},{16,12,15,11,14,13,Sqrt/12},{16,13,14,11,15,12,Sqrt/12},{16,14,13,11,12,15,Sqrt/12},{16,15,12,11,13,14,Sqrt/12}},{{11,12,13,16,15,14,Sqrt/4},{11,13,12,16,14,15,Sqrt/4},{11,14,15,16,13,12,Sqrt/4},{11,15,14,16,12,13,Sqrt/4},{12,11,13,15,16,14,Sqrt/4},{12,13,11,15,14,16,Sqrt/4},{12,14,16,15,13,11,Sqrt/4},{12,16,14,15,11,13,Sqrt/4},{13,11,12,14,16,15,Sqrt/4},{13,12,11,14,15,16,Sqrt/4},{13,15,16,14,12,11,Sqrt/4},{13,16,15,14,11,12,Sqrt/4},{14,11,15,13,16,12,Sqrt/4},{14,12,16,13,15,11,Sqrt/4},{14,15,11,13,12,16,Sqrt/4},{14,16,12,13,11,15,Sqrt/4},{15,11,14,12,16,13,Sqrt/4},{15,13,16,12,14,11,Sqrt/4},{15,14,11,12,13,16,Sqrt/4},{15,16,13,12,11,14,Sqrt/4},{16,12,14,11,15,13,Sqrt/4},{16,13,15,11,14,12,Sqrt/4},{16,14,12,11,13,15,Sqrt/4},{16,15,13,11,12,14,Sqrt/4}},{{11,12,14,13,15,16,(3 Sqrt)/4},{11,14,12,13,16,15,(3 Sqrt)/4},{11,15,16,13,12,14,(3 Sqrt)/4},{11,16,15,13,14,12,(3 Sqrt)/4},{12,11,14,15,13,16,(3 Sqrt)/4},{12,13,16,15,11,14,(3 Sqrt)/4},{12,14,11,15,16,13,(3 Sqrt)/4},{12,16,13,15,14,11,(3 Sqrt)/4},{13,12,16,11,15,14,(3 Sqrt)/4},{13,14,15,11,16,12,(3 Sqrt)/4},{13,15,14,11,12,16,(3 Sqrt)/4},{13,16,12,11,14,15,(3 Sqrt)/4},{14,11,12,16,13,15,(3 Sqrt)/4},{14,12,11,16,15,13,(3 Sqrt)/4},{14,13,15,16,11,12,(3 Sqrt)/4},{14,15,13,16,12,11,(3 Sqrt)/4},{15,11,16,12,13,14,(3 Sqrt)/4},{15,13,14,12,11,16,(3 Sqrt)/4},{15,14,13,12,16,11,(3 Sqrt)/4},{15,16,11,12,14,13,(3 Sqrt)/4},{16,11,15,14,13,12,(3 Sqrt)/4},{16,12,13,14,15,11,(3 Sqrt)/4},{16,13,12,14,11,15,(3 Sqrt)/4},{16,15,11,14,12,13,(3 Sqrt)/4}},{{11,12,14,13,16,15,Sqrt/12},{11,14,12,13,15,16,Sqrt/12},{11,15,16,13,14,12,Sqrt/12},{11,16,15,13,12,14,Sqrt/12},{12,11,14,16,13,15,Sqrt/12},{12,13,15,16,11,14,Sqrt/12},{12,14,11,16,15,13,Sqrt/12},{12,15,13,16,14,11,Sqrt/12},{13,12,15,11,16,14,Sqrt/12},{13,14,16,11,15,12,Sqrt/12},{13,15,12,11,14,16,Sqrt/12},{13,16,14,11,12,15,Sqrt/12},{14,11,12,15,13,16,Sqrt/12},{14,12,11,15,16,13,Sqrt/12},{14,13,16,15,11,12,Sqrt/12},{14,16,13,15,12,11,Sqrt/12},{15,11,16,14,13,12,Sqrt/12},{15,12,13,14,16,11,Sqrt/12},{15,13,12,14,11,16,Sqrt/12},{15,16,11,14,12,13,Sqrt/12},{16,11,15,12,13,14,Sqrt/12},{16,13,14,12,11,15,Sqrt/12},{16,14,13,12,15,11,Sqrt/12},{16,15,11,12,14,13,Sqrt/12}},{{11,12,14,15,13,16,Sqrt/12},{11,13,16,15,12,14,Sqrt/12},{11,14,12,15,16,13,Sqrt/12},{11,16,13,15,14,12,Sqrt/12},{12,11,14,13,15,16,Sqrt/12},{12,14,11,13,16,15,Sqrt/12},{12,15,16,13,11,14,Sqrt/12},{12,16,15,13,14,11,Sqrt/12},{13,11,16,12,15,14,Sqrt/12},{13,14,15,12,16,11,Sqrt/12},{13,15,14,12,11,16,Sqrt/12},{13,16,11,12,14,15,Sqrt/12},{14,11,12,16,15,13,Sqrt/12},{14,12,11,16,13,15,Sqrt/12},{14,13,15,16,12,11,Sqrt/12},{14,15,13,16,11,12,Sqrt/12},{15,12,16,11,13,14,Sqrt/12},{15,13,14,11,12,16,Sqrt/12},{15,14,13,11,16,12,Sqrt/12},{15,16,12,11,14,13,Sqrt/12},{16,11,13,14,15,12,Sqrt/12},{16,12,15,14,13,11,Sqrt/12},{16,13,11,14,12,15,Sqrt/12},{16,15,12,14,11,13,Sqrt/12}},{{11,12,14,15,16,13,Sqrt/12},{11,13,16,15,14,12,Sqrt/12},{11,14,12,15,13,16,Sqrt/12},{11,16,13,15,12,14,Sqrt/12},{12,11,14,16,15,13,Sqrt/12},{12,13,15,16,14,11,Sqrt/12},{12,14,11,16,13,15,Sqrt/12},{12,15,13,16,11,14,Sqrt/12},{13,11,16,14,15,12,Sqrt/12},{13,12,15,14,16,11,Sqrt/12},{13,15,12,14,11,16,Sqrt/12},{13,16,11,14,12,15,Sqrt/12},{14,11,12,13,15,16,Sqrt/12},{14,12,11,13,16,15,Sqrt/12},{14,15,16,13,11,12,Sqrt/12},{14,16,15,13,12,11,Sqrt/12},{15,12,13,11,16,14,Sqrt/12},{15,13,12,11,14,16,Sqrt/12},{15,14,16,11,13,12,Sqrt/12},{15,16,14,11,12,13,Sqrt/12},{16,11,13,12,15,14,Sqrt/12},{16,13,11,12,14,15,Sqrt/12},{16,14,15,12,13,11,Sqrt/12},{16,15,14,12,11,13,Sqrt/12}},{{11,12,14,16,13,15,Sqrt/3},{11,13,15,16,12,14,Sqrt/3},{11,14,12,16,15,13,Sqrt/3},{11,15,13,16,14,12,Sqrt/3},{12,11,14,13,16,15,Sqrt/3},{12,14,11,13,15,16,Sqrt/3},{12,15,16,13,14,11,Sqrt/3},{12,16,15,13,11,14,Sqrt/3},{13,11,15,12,16,14,Sqrt/3},{13,14,16,12,15,11,Sqrt/3},{13,15,11,12,14,16,Sqrt/3},{13,16,14,12,11,15,Sqrt/3},{14,11,12,15,16,13,Sqrt/3},{14,12,11,15,13,16,Sqrt/3},{14,13,16,15,12,11,Sqrt/3},{14,16,13,15,11,12,Sqrt/3},{15,11,13,14,16,12,Sqrt/3},{15,12,16,14,13,11,Sqrt/3},{15,13,11,14,12,16,Sqrt/3},{15,16,12,14,11,13,Sqrt/3},{16,12,15,11,13,14,Sqrt/3},{16,13,14,11,12,15,Sqrt/3},{16,14,13,11,15,12,Sqrt/3},{16,15,12,11,14,13,Sqrt/3}},{{11,12,14,16,15,13,Sqrt},{11,13,15,16,14,12,Sqrt},{11,14,12,16,13,15,Sqrt},{11,15,13,16,12,14,Sqrt},{12,11,14,15,16,13,Sqrt},{12,13,16,15,14,11,Sqrt},{12,14,11,15,13,16,Sqrt},{12,16,13,15,11,14,Sqrt},{13,11,15,14,16,12,Sqrt},{13,12,16,14,15,11,Sqrt},{13,15,11,14,12,16,Sqrt},{13,16,12,14,11,15,Sqrt},{14,11,12,13,16,15,Sqrt},{14,12,11,13,15,16,Sqrt},{14,15,16,13,12,11,Sqrt},{14,16,15,13,11,12,Sqrt},{15,11,13,12,16,14,Sqrt},{15,13,11,12,14,16,Sqrt},{15,14,16,12,13,11,Sqrt},{15,16,14,12,11,13,Sqrt},{16,12,13,11,15,14,Sqrt},{16,13,12,11,14,15,Sqrt},{16,14,15,11,13,12,Sqrt},{16,15,14,11,12,13,Sqrt}},{{11,12,15,13,14,16,(5 Sqrt)/12},{11,14,16,13,12,15,(5 Sqrt)/12},{11,15,12,13,16,14,(5 Sqrt)/12},{11,16,14,13,15,12,(5 Sqrt)/12},{12,11,15,14,13,16,(5 Sqrt)/12},{12,13,16,14,11,15,(5 Sqrt)/12},{12,15,11,14,16,13,(5 Sqrt)/12},{12,16,13,14,15,11,(5 Sqrt)/12},{13,12,16,11,14,15,(5 Sqrt)/12},{13,14,15,11,12,16,(5 Sqrt)/12},{13,15,14,11,16,12,(5 Sqrt)/12},{13,16,12,11,15,14,(5 Sqrt)/12},{14,11,16,12,13,15,(5 Sqrt)/12},{14,13,15,12,11,16,(5 Sqrt)/12},{14,15,13,12,16,11,(5 Sqrt)/12},{14,16,11,12,15,13,(5 Sqrt)/12},{15,11,12,16,13,14,(5 Sqrt)/12},{15,12,11,16,14,13,(5 Sqrt)/12},{15,13,14,16,11,12,(5 Sqrt)/12},{15,14,13,16,12,11,(5 Sqrt)/12},{16,11,14,15,13,12,(5 Sqrt)/12},{16,12,13,15,14,11,(5 Sqrt)/12},{16,13,12,15,11,14,(5 Sqrt)/12},{16,14,11,15,12,13,(5 Sqrt)/12}},{{11,12,15,13,16,14,(5 Sqrt)/12},{11,14,16,13,15,12,(5 Sqrt)/12},{11,15,12,13,14,16,(5 Sqrt)/12},{11,16,14,13,12,15,(5 Sqrt)/12},{12,11,15,16,13,14,(5 Sqrt)/12},{12,13,14,16,11,15,(5 Sqrt)/12},{12,14,13,16,15,11,(5 Sqrt)/12},{12,15,11,16,14,13,(5 Sqrt)/12},{13,12,14,11,16,15,(5 Sqrt)/12},{13,14,12,11,15,16,(5 Sqrt)/12},{13,15,16,11,14,12,(5 Sqrt)/12},{13,16,15,11,12,14,(5 Sqrt)/12},{14,11,16,15,13,12,(5 Sqrt)/12},{14,12,13,15,16,11,(5 Sqrt)/12},{14,13,12,15,11,16,(5 Sqrt)/12},{14,16,11,15,12,13,(5 Sqrt)/12},{15,11,12,14,13,16,(5 Sqrt)/12},{15,12,11,14,16,13,(5 Sqrt)/12},{15,13,16,14,11,12,(5 Sqrt)/12},{15,16,13,14,12,11,(5 Sqrt)/12},{16,11,14,12,13,15,(5 Sqrt)/12},{16,13,15,12,11,14,(5 Sqrt)/12},{16,14,11,12,15,13,(5 Sqrt)/12},{16,15,13,12,14,11,(5 Sqrt)/12}},{{11,12,15,14,13,16,(17 Sqrt)/12},{11,13,16,14,12,15,(17 Sqrt)/12},{11,15,12,14,16,13,(17 Sqrt)/12},{11,16,13,14,15,12,(17 Sqrt)/12},{12,11,15,13,14,16,(17 Sqrt)/12},{12,14,16,13,11,15,(17 Sqrt)/12},{12,15,11,13,16,14,(17 Sqrt)/12},{12,16,14,13,15,11,(17 Sqrt)/12},{13,11,16,12,14,15,(17 Sqrt)/12},{13,14,15,12,11,16,(17 Sqrt)/12},{13,15,14,12,16,11,(17 Sqrt)/12},{13,16,11,12,15,14,(17 Sqrt)/12},{14,12,16,11,13,15,(17 Sqrt)/12},{14,13,15,11,12,16,(17 Sqrt)/12},{14,15,13,11,16,12,(17 Sqrt)/12},{14,16,12,11,15,13,(17 Sqrt)/12},{15,11,12,16,14,13,(17 Sqrt)/12},{15,12,11,16,13,14,(17 Sqrt)/12},{15,13,14,16,12,11,(17 Sqrt)/12},{15,14,13,16,11,12,(17 Sqrt)/12},{16,11,13,15,14,12,(17 Sqrt)/12},{16,12,14,15,13,11,(17 Sqrt)/12},{16,13,11,15,12,14,(17 Sqrt)/12},{16,14,12,15,11,13,(17 Sqrt)/12}},{{11,12,15,14,16,13,Sqrt/12},{11,13,16,14,15,12,Sqrt/12},{11,15,12,14,13,16,Sqrt/12},{11,16,13,14,12,15,Sqrt/12},{12,11,15,16,14,13,Sqrt/12},{12,13,14,16,15,11,Sqrt/12},{12,14,13,16,11,15,Sqrt/12},{12,15,11,16,13,14,Sqrt/12},{13,11,16,15,14,12,Sqrt/12},{13,12,14,15,16,11,Sqrt/12},{13,14,12,15,11,16,Sqrt/12},{13,16,11,15,12,14,Sqrt/12},{14,12,13,11,16,15,Sqrt/12},{14,13,12,11,15,16,Sqrt/12},{14,15,16,11,13,12,Sqrt/12},{14,16,15,11,12,13,Sqrt/12},{15,11,12,13,14,16,Sqrt/12},{15,12,11,13,16,14,Sqrt/12},{15,14,16,13,11,12,Sqrt/12},{15,16,14,13,12,11,Sqrt/12},{16,11,13,12,14,15,Sqrt/12},{16,13,11,12,15,14,Sqrt/12},{16,14,15,12,11,13,Sqrt/12},{16,15,14,12,13,11,Sqrt/12}},{{11,12,15,16,13,14,Sqrt/12},{11,13,14,16,12,15,Sqrt/12},{11,14,13,16,15,12,Sqrt/12},{11,15,12,16,14,13,Sqrt/12},{12,11,15,13,16,14,Sqrt/12},{12,14,16,13,15,11,Sqrt/12},{12,15,11,13,14,16,Sqrt/12},{12,16,14,13,11,15,Sqrt/12},{13,11,14,12,16,15,Sqrt/12},{13,14,11,12,15,16,Sqrt/12},{13,15,16,12,14,11,Sqrt/12},{13,16,15,12,11,14,Sqrt/12},{14,11,13,15,16,12,Sqrt/12},{14,12,16,15,13,11,Sqrt/12},{14,13,11,15,12,16,Sqrt/12},{14,16,12,15,11,13,Sqrt/12},{15,11,12,14,16,13,Sqrt/12},{15,12,11,14,13,16,Sqrt/12},{15,13,16,14,12,11,Sqrt/12},{15,16,13,14,11,12,Sqrt/12},{16,12,14,11,13,15,Sqrt/12},{16,13,15,11,12,14,Sqrt/12},{16,14,12,11,15,13,Sqrt/12},{16,15,13,11,14,12,Sqrt/12}},{{11,12,15,16,14,13,Sqrt/12},{11,13,14,16,15,12,Sqrt/12},{11,14,13,16,12,15,Sqrt/12},{11,15,12,16,13,14,Sqrt/12},{12,11,15,14,16,13,Sqrt/12},{12,13,16,14,15,11,Sqrt/12},{12,15,11,14,13,16,Sqrt/12},{12,16,13,14,11,15,Sqrt/12},{13,11,14,15,16,12,Sqrt/12},{13,12,16,15,14,11,Sqrt/12},{13,14,11,15,12,16,Sqrt/12},{13,16,12,15,11,14,Sqrt/12},{14,11,13,12,16,15,Sqrt/12},{14,13,11,12,15,16,Sqrt/12},{14,15,16,12,13,11,Sqrt/12},{14,16,15,12,11,13,Sqrt/12},{15,11,12,13,16,14,Sqrt/12},{15,12,11,13,14,16,Sqrt/12},{15,14,16,13,12,11,Sqrt/12},{15,16,14,13,11,12,Sqrt/12},{16,12,13,11,14,15,Sqrt/12},{16,13,12,11,15,14,Sqrt/12},{16,14,15,11,12,13,Sqrt/12},{16,15,14,11,13,12,Sqrt/12}},{{11,12,16,13,14,15,Sqrt/12},{11,14,15,13,12,16,Sqrt/12},{11,15,14,13,16,12,Sqrt/12},{11,16,12,13,15,14,Sqrt/12},{12,11,16,14,13,15,Sqrt/12},{12,13,15,14,11,16,Sqrt/12},{12,15,13,14,16,11,Sqrt/12},{12,16,11,14,15,13,Sqrt/12},{13,12,15,11,14,16,Sqrt/12},{13,14,16,11,12,15,Sqrt/12},{13,15,12,11,16,14,Sqrt/12},{13,16,14,11,15,12,Sqrt/12},{14,11,15,12,13,16,Sqrt/12},{14,13,16,12,11,15,Sqrt/12},{14,15,11,12,16,13,Sqrt/12},{14,16,13,12,15,11,Sqrt/12},{15,11,14,16,13,12,Sqrt/12},{15,12,13,16,14,11,Sqrt/12},{15,13,12,16,11,14,Sqrt/12},{15,14,11,16,12,13,Sqrt/12},{16,11,12,15,13,14,Sqrt/12},{16,12,11,15,14,13,Sqrt/12},{16,13,14,15,11,12,Sqrt/12},{16,14,13,15,12,11,Sqrt/12}},{{11,12,16,13,15,14,(3 Sqrt)/4},{11,14,15,13,16,12,(3 Sqrt)/4},{11,15,14,13,12,16,(3 Sqrt)/4},{11,16,12,13,14,15,(3 Sqrt)/4},{12,11,16,15,13,14,(3 Sqrt)/4},{12,13,14,15,11,16,(3 Sqrt)/4},{12,14,13,15,16,11,(3 Sqrt)/4},{12,16,11,15,14,13,(3 Sqrt)/4},{13,12,14,11,15,16,(3 Sqrt)/4},{13,14,12,11,16,15,(3 Sqrt)/4},{13,15,16,11,12,14,(3 Sqrt)/4},{13,16,15,11,14,12,(3 Sqrt)/4},{14,11,15,16,13,12,(3 Sqrt)/4},{14,12,13,16,15,11,(3 Sqrt)/4},{14,13,12,16,11,15,(3 Sqrt)/4},{14,15,11,16,12,13,(3 Sqrt)/4},{15,11,14,12,13,16,(3 Sqrt)/4},{15,13,16,12,11,14,(3 Sqrt)/4},{15,14,11,12,16,13,(3 Sqrt)/4},{15,16,13,12,14,11,(3 Sqrt)/4},{16,11,12,14,13,15,(3 Sqrt)/4},{16,12,11,14,15,13,(3 Sqrt)/4},{16,13,15,14,11,12,(3 Sqrt)/4},{16,15,13,14,12,11,(3 Sqrt)/4}},{{11,12,16,14,13,15,(7 Sqrt)/3},{11,13,15,14,12,16,(7 Sqrt)/3},{11,15,13,14,16,12,(7 Sqrt)/3},{11,16,12,14,15,13,(7 Sqrt)/3},{12,11,16,13,14,15,(7 Sqrt)/3},{12,14,15,13,11,16,(7 Sqrt)/3},{12,15,14,13,16,11,(7 Sqrt)/3},{12,16,11,13,15,14,(7 Sqrt)/3},{13,11,15,12,14,16,(7 Sqrt)/3},{13,14,16,12,11,15,(7 Sqrt)/3},{13,15,11,12,16,14,(7 Sqrt)/3},{13,16,14,12,15,11,(7 Sqrt)/3},{14,12,15,11,13,16,(7 Sqrt)/3},{14,13,16,11,12,15,(7 Sqrt)/3},{14,15,12,11,16,13,(7 Sqrt)/3},{14,16,13,11,15,12,(7 Sqrt)/3},{15,11,13,16,14,12,(7 Sqrt)/3},{15,12,14,16,13,11,(7 Sqrt)/3},{15,13,11,16,12,14,(7 Sqrt)/3},{15,14,12,16,11,13,(7 Sqrt)/3},{16,11,12,15,14,13,(7 Sqrt)/3},{16,12,11,15,13,14,(7 Sqrt)/3},{16,13,14,15,12,11,(7 Sqrt)/3},{16,14,13,15,11,12,(7 Sqrt)/3}},{{11,12,16,14,15,13,21 Sqrt},{11,13,15,14,16,12,21 Sqrt},{11,15,13,14,12,16,21 Sqrt},{11,16,12,14,13,15,21 Sqrt},{12,11,16,15,14,13,21 Sqrt},{12,13,14,15,16,11,21 Sqrt},{12,14,13,15,11,16,21 Sqrt},{12,16,11,15,13,14,21 Sqrt},{13,11,15,16,14,12,21 Sqrt},{13,12,14,16,15,11,21 Sqrt},{13,14,12,16,11,15,21 Sqrt},{13,15,11,16,12,14,21 Sqrt},{14,12,13,11,15,16,21 Sqrt},{14,13,12,11,16,15,21 Sqrt},{14,15,16,11,12,13,21 Sqrt},{14,16,15,11,13,12,21 Sqrt},{15,11,13,12,14,16,21 Sqrt},{15,13,11,12,16,14,21 Sqrt},{15,14,16,12,11,13,21 Sqrt},{15,16,14,12,13,11,21 Sqrt},{16,11,12,13,14,15,21 Sqrt},{16,12,11,13,15,14,21 Sqrt},{16,14,15,13,11,12,21 Sqrt},{16,15,14,13,12,11,21 Sqrt}},{{11,12,16,15,13,14,Sqrt/12},{11,13,14,15,12,16,Sqrt/12},{11,14,13,15,16,12,Sqrt/12},{11,16,12,15,14,13,Sqrt/12},{12,11,16,13,15,14,Sqrt/12},{12,14,15,13,16,11,Sqrt/12},{12,15,14,13,11,16,Sqrt/12},{12,16,11,13,14,15,Sqrt/12},{13,11,14,12,15,16,Sqrt/12},{13,14,11,12,16,15,Sqrt/12},{13,15,16,12,11,14,Sqrt/12},{13,16,15,12,14,11,Sqrt/12},{14,11,13,16,15,12,Sqrt/12},{14,12,15,16,13,11,Sqrt/12},{14,13,11,16,12,15,Sqrt/12},{14,15,12,16,11,13,Sqrt/12},{15,12,14,11,13,16,Sqrt/12},{15,13,16,11,12,14,Sqrt/12},{15,14,12,11,16,13,Sqrt/12},{15,16,13,11,14,12,Sqrt/12},{16,11,12,14,15,13,Sqrt/12},{16,12,11,14,13,15,Sqrt/12},{16,13,15,14,12,11,Sqrt/12},{16,15,13,14,11,12,Sqrt/12}},{{11,12,16,15,14,13,Sqrt/12},{11,13,14,15,16,12,Sqrt/12},{11,14,13,15,12,16,Sqrt/12},{11,16,12,15,13,14,Sqrt/12},{12,11,16,14,15,13,Sqrt/12},{12,13,15,14,16,11,Sqrt/12},{12,15,13,14,11,16,Sqrt/12},{12,16,11,14,13,15,Sqrt/12},{13,11,14,16,15,12,Sqrt/12},{13,12,15,16,14,11,Sqrt/12},{13,14,11,16,12,15,Sqrt/12},{13,15,12,16,11,14,Sqrt/12},{14,11,13,12,15,16,Sqrt/12},{14,13,11,12,16,15,Sqrt/12},{14,15,16,12,11,13,Sqrt/12},{14,16,15,12,13,11,Sqrt/12},{15,12,13,11,14,16,Sqrt/12},{15,13,12,11,16,14,Sqrt/12},{15,14,16,11,12,13,Sqrt/12},{15,16,14,11,13,12,Sqrt/12},{16,11,12,13,15,14,Sqrt/12},{16,12,11,13,14,15,Sqrt/12},{16,14,15,13,12,11,Sqrt/12},{16,15,14,13,11,12,Sqrt/12}},{{11,13,14,12,15,16,Sqrt/12},{11,14,13,12,16,15,Sqrt/12},{11,15,16,12,13,14,Sqrt/12},{11,16,15,12,14,13,Sqrt/12},{12,13,16,11,15,14,Sqrt/12},{12,14,15,11,16,13,Sqrt/12},{12,15,14,11,13,16,Sqrt/12},{12,16,13,11,14,15,Sqrt/12},{13,11,14,15,12,16,Sqrt/12},{13,12,16,15,11,14,Sqrt/12},{13,14,11,15,16,12,Sqrt/12},{13,16,12,15,14,11,Sqrt/12},{14,11,13,16,12,15,Sqrt/12},{14,12,15,16,11,13,Sqrt/12},{14,13,11,16,15,12,Sqrt/12},{14,15,12,16,13,11,Sqrt/12},{15,11,16,13,12,14,Sqrt/12},{15,12,14,13,11,16,Sqrt/12},{15,14,12,13,16,11,Sqrt/12},{15,16,11,13,14,12,Sqrt/12},{16,11,15,14,12,13,Sqrt/12},{16,12,13,14,11,15,Sqrt/12},{16,13,12,14,15,11,Sqrt/12},{16,15,11,14,13,12,Sqrt/12}},{{11,13,14,12,16,15,(13 Sqrt)/12},{11,14,13,12,15,16,(13 Sqrt)/12},{11,15,16,12,14,13,(13 Sqrt)/12},{11,16,15,12,13,14,(13 Sqrt)/12},{12,13,15,11,16,14,(13 Sqrt)/12},{12,14,16,11,15,13,(13 Sqrt)/12},{12,15,13,11,14,16,(13 Sqrt)/12},{12,16,14,11,13,15,(13 Sqrt)/12},{13,11,14,16,12,15,(13 Sqrt)/12},{13,12,15,16,11,14,(13 Sqrt)/12},{13,14,11,16,15,12,(13 Sqrt)/12},{13,15,12,16,14,11,(13 Sqrt)/12},{14,11,13,15,12,16,(13 Sqrt)/12},{14,12,16,15,11,13,(13 Sqrt)/12},{14,13,11,15,16,12,(13 Sqrt)/12},{14,16,12,15,13,11,(13 Sqrt)/12},{15,11,16,14,12,13,(13 Sqrt)/12},{15,12,13,14,11,16,(13 Sqrt)/12},{15,13,12,14,16,11,(13 Sqrt)/12},{15,16,11,14,13,12,(13 Sqrt)/12},{16,11,15,13,12,14,(13 Sqrt)/12},{16,12,14,13,11,15,(13 Sqrt)/12},{16,14,12,13,15,11,(13 Sqrt)/12},{16,15,11,13,14,12,(13 Sqrt)/12}},{{11,13,15,12,14,16,(5 Sqrt)/3},{11,14,16,12,13,15,(5 Sqrt)/3},{11,15,13,12,16,14,(5 Sqrt)/3},{11,16,14,12,15,13,(5 Sqrt)/3},{12,13,16,11,14,15,(5 Sqrt)/3},{12,14,15,11,13,16,(5 Sqrt)/3},{12,15,14,11,16,13,(5 Sqrt)/3},{12,16,13,11,15,14,(5 Sqrt)/3},{13,11,15,14,12,16,(5 Sqrt)/3},{13,12,16,14,11,15,(5 Sqrt)/3},{13,15,11,14,16,12,(5 Sqrt)/3},{13,16,12,14,15,11,(5 Sqrt)/3},{14,11,16,13,12,15,(5 Sqrt)/3},{14,12,15,13,11,16,(5 Sqrt)/3},{14,15,12,13,16,11,(5 Sqrt)/3},{14,16,11,13,15,12,(5 Sqrt)/3},{15,11,13,16,12,14,(5 Sqrt)/3},{15,12,14,16,11,13,(5 Sqrt)/3},{15,13,11,16,14,12,(5 Sqrt)/3},{15,14,12,16,13,11,(5 Sqrt)/3},{16,11,14,15,12,13,(5 Sqrt)/3},{16,12,13,15,11,14,(5 Sqrt)/3},{16,13,12,15,14,11,(5 Sqrt)/3},{16,14,11,15,13,12,(5 Sqrt)/3}},{{11,13,15,12,16,14,(5 Sqrt)/3},{11,14,16,12,15,13,(5 Sqrt)/3},{11,15,13,12,14,16,(5 Sqrt)/3},{11,16,14,12,13,15,(5 Sqrt)/3},{12,13,14,11,16,15,(5 Sqrt)/3},{12,14,13,11,15,16,(5 Sqrt)/3},{12,15,16,11,14,13,(5 Sqrt)/3},{12,16,15,11,13,14,(5 Sqrt)/3},{13,11,15,16,12,14,(5 Sqrt)/3},{13,12,14,16,11,15,(5 Sqrt)/3},{13,14,12,16,15,11,(5 Sqrt)/3},{13,15,11,16,14,12,(5 Sqrt)/3},{14,11,16,15,12,13,(5 Sqrt)/3},{14,12,13,15,11,16,(5 Sqrt)/3},{14,13,12,15,16,11,(5 Sqrt)/3},{14,16,11,15,13,12,(5 Sqrt)/3},{15,11,13,14,12,16,(5 Sqrt)/3},{15,12,16,14,11,13,(5 Sqrt)/3},{15,13,11,14,16,12,(5 Sqrt)/3},{15,16,12,14,13,11,(5 Sqrt)/3},{16,11,14,13,12,15,(5 Sqrt)/3},{16,12,15,13,11,14,(5 Sqrt)/3},{16,14,11,13,15,12,(5 Sqrt)/3},{16,15,12,13,14,11,(5 Sqrt)/3}},{{11,13,16,12,14,15,Sqrt/12},{11,14,15,12,13,16,Sqrt/12},{11,15,14,12,16,13,Sqrt/12},{11,16,13,12,15,14,Sqrt/12},{12,13,15,11,14,16,Sqrt/12},{12,14,16,11,13,15,Sqrt/12},{12,15,13,11,16,14,Sqrt/12},{12,16,14,11,15,13,Sqrt/12},{13,11,16,14,12,15,Sqrt/12},{13,12,15,14,11,16,Sqrt/12},{13,15,12,14,16,11,Sqrt/12},{13,16,11,14,15,12,Sqrt/12},{14,11,15,13,12,16,Sqrt/12},{14,12,16,13,11,15,Sqrt/12},{14,15,11,13,16,12,Sqrt/12},{14,16,12,13,15,11,Sqrt/12},{15,11,14,16,12,13,Sqrt/12},{15,12,13,16,11,14,Sqrt/12},{15,13,12,16,14,11,Sqrt/12},{15,14,11,16,13,12,Sqrt/12},{16,11,13,15,12,14,Sqrt/12},{16,12,14,15,11,13,Sqrt/12},{16,13,11,15,14,12,Sqrt/12},{16,14,12,15,13,11,Sqrt/12}},{{11,13,16,12,15,14,Sqrt/12},{11,14,15,12,16,13,Sqrt/12},{11,15,14,12,13,16,Sqrt/12},{11,16,13,12,14,15,Sqrt/12},{12,13,14,11,15,16,Sqrt/12},{12,14,13,11,16,15,Sqrt/12},{12,15,16,11,13,14,Sqrt/12},{12,16,15,11,14,13,Sqrt/12},{13,11,16,15,12,14,Sqrt/12},{13,12,14,15,11,16,Sqrt/12},{13,14,12,15,16,11,Sqrt/12},{13,16,11,15,14,12,Sqrt/12},{14,11,15,16,12,13,Sqrt/12},{14,12,13,16,11,15,Sqrt/12},{14,13,12,16,15,11,Sqrt/12},{14,15,11,16,13,12,Sqrt/12},{15,11,14,13,12,16,Sqrt/12},{15,12,16,13,11,14,Sqrt/12},{15,14,11,13,16,12,Sqrt/12},{15,16,12,13,14,11,Sqrt/12},{16,11,13,14,12,15,Sqrt/12},{16,12,15,14,11,13,Sqrt/12},{16,13,11,14,15,12,Sqrt/12},{16,15,12,14,13,11,Sqrt/12}}}
这个是我的计算,最后一个元素对应的是体积!
页: [1]
查看完整版本: 四面体的棱长组合计数