mathematica 发表于 2021-3-4 12:29
可以通过数值解来逼近精确解
两个解分别为
\[\{c,b\}\to \left\{\frac{1}{2} \left(9-5 \sqrt{13 ...
cs:=(a,b,c)->((a^2+b^2-c^2)/(2*a*b));
x:=sqrt(39);
ans:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b});
simplify(radical(ans));
maple代码
求解结果
暂时不贴结果,因为不知道如何化简rootof
cs:=(a,b,c)->((a^2+b^2-c^2)/(2*a*b)):
x:=sqrt(39):
ans:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b},explicit);
aaa:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b});
simplify(allvalues(aaa));
simplify(allvalues(aaa));
下面这个代码好!
cs:=(a,b,c)->((a^2+b^2-c^2)/(2*a*b)):
x:=sqrt(39):
ans:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b},explicit);
aaa:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b});
bbb:=simplify(allvalues());
ccc:=latex(bbb);
\[[ \left\{ b=6-\sqrt {13},c={\frac{9}{2}}-{\frac {5\,\sqrt {13}}{2}}
\right\} , \left\{ b=6+\sqrt {13},c={\frac{9}{2}}+{\frac {5\,\sqrt {
13}}{2}} \right\} ]
\]
mathematica 发表于 2021-6-7 16:33
maple代码
求解结果
再次改进代码:
cs:=(a,b,c)->((a^2+b^2-c^2)/(2*a*b)):
x:=sqrt(39):
ans:=solve({cs(c,10,x)=cs(b,4,x),arccos(cs(c,x,10))+arccos(cs(b,x,4))=Pi/3},{c,b});
simplify()
求解结果
\[[ \left\{ b=6+\sqrt {13},c={\frac{9}{2}}+{\frac {5\,\sqrt {13}}{2}}
\right\} , \left\{ b=6-\sqrt {13},c={\frac{9}{2}}-{\frac {5\,\sqrt {
13}}{2}} \right\} ]
\]
页:
1
[2]