找到了80年前提出的“单位猜想”的反例
2月22日,名叫Giles Gardam的数学博士后在YouTube上直播了一个小时,讨论代数领域里的单位猜想——至今已有80多年的历史了。这哥们拉拉杂杂讲了一个多小时的历史,然后在下播前最后几分钟,淡定地说:关于这个猜想,有一个最新进展,我构造出了一个反例,说明猜想不成立。你们没想到吧:lol
当时的听众纷纷让他详细讲讲,但 Gardam 拒绝了,他认为他的方法还有挖掘潜力,可以解决其他的问题。等过几个月再慢慢分享给大家。
唯一确定的就是,他先想出了反例必须遵循的特征,然后用计算机检索由特定三维晶体形状的对称性(Hantzsche-Wendt群)建立的群代数内符合这一特征的元素。
猜想的意思大概是说,给乘法群的元素赋予加法运算,如a,b,c∈群G,把形如a+7b+5c的元素,构成一个新的群或半群。单位猜想预测,只有G里存在一个元素r,使对某自然数n,r^n=1时,则像前面那种由G里元素线性表示出来的新元素,才有可能存在乘法逆元。
而Hantzsche-Wendt群里面恰好不存在如r那样幂1的元素。不过可惜Hantzsche-Wendt群是无限的。并且在2010年,有两位数学家证明,如果群中存在反例,那么它肯定特别复杂。
虽然寻找过程十分艰难,但事后检验却很简单。只要把反例直接相乘,看能否得到单位元1就行。
现在,Gardam在由Hantzsche-Wendt群元素构成的代数结构中,找到了两个具有21个项的乘法逆。
论文:https://arxiv.org/abs/2102.11818
单位猜想( Unit Conjecture)与零除数(Zero Divisor)和幂(Idempotent)猜想合称为卡普兰斯基猜想(Kaplansky Conjectures)。
来源 https://www.quantamagazine.org/mathematician-disproves-group-algebra-unit-conjecture-20210412/
页:
[1]