wayne
发表于 2021-5-6 16:22:01
我穷举了下C(89,4)=2441626种情况,发现只有51个解,不包括$x=y$:
lst={};
ans=Subsets,{4}];
Do]Degree]Sin[#[]Degree]-Sin[#[]Degree]Sin[#[]Degree]&@ans[]],10^-9]==0,AppendTo];idx++,{idx,Length}]
{1,2,30,89}
{2,4,30,88}
{3,6,30,87}
{4,8,30,86}
{5,10,30,85}
{6,12,24,54}
{6,12,30,84}
{7,14,30,83}
{8,16,30,82}
{9,12,48,81}
{9,18,30,81}
{10,20,30,80}
{11,22,30,79}
{12,18,30,48}
{12,18,42,84}
{12,24,30,78}
{13,26,30,77}
{14,28,30,76}
{15,18,54,75}
{16,30,32,74}
{17,30,34,73}
{18,24,48,78}
{18,30,36,72}
{19,30,38,71}
{20,30,40,70}
{21,30,42,69}
{22,30,44,68}
{23,30,46,67}
{24,27,63,84}
{24,30,48,66}
{24,30,54,84}
{25,30,50,65}
{26,30,52,64}
{27,30,54,63}
{28,30,56,62}
{29,30,58,61}
{30,31,59,62}
{30,32,58,64}
{30,33,57,66}
{30,34,56,68}
{30,35,55,70}
{30,36,54,72}
{30,37,53,74}
{30,38,52,76}
{30,39,51,78}
{30,40,50,80}
{30,41,49,82}
{30,42,48,84}
{30,43,47,86}
{30,44,46,88}
{48,54,66,84}
如果是$ a < x ≤ y < b ≤ 90$,则需要增加5个解:
{6,18,18,66}
{15,30,30,75}
{18,30,30,54}
{30,45,45,90}
{42,54,54,78}
northwolves
发表于 2021-5-7 08:20:51
{6,12,24,54}
{12,18,30,48}
{12,18,42,84}
{15,18,54,75}
{18,24,48,78}
{24,27,63,84}
{48,54,66,84}
这六组是什么公式呢?
王守恩
发表于 2021-5-7 08:26:19
wayne 发表于 2021-5-6 16:22
我穷举了下C(89,4)=2441626种情况,发现只有51个解,不包括$x=y$:
小结。
题目:正整数 a < x ≤ y < b ≤ 90 ,满足\(\D\frac{\sin(a^\circ)\sin(b^\circ)}{\sin(x^\circ)\sin(y^\circ)}=1\) 的不同算式有几个?
感谢 mathematica!感谢 mathe!感谢 sheng_jianguo!感谢 wayne!
可以有 56 个算式。
a, x, y, b,
01:01, 02, 30, 89,
02:02, 04, 30, 88,
03:03, 06, 30, 87,
04:04, 08, 30, 86,
05:05, 10, 30, 85,
06:06, 12, 30, 84,
07:07, 14, 30, 83,
08:08, 16, 30, 82,
09:09, 18, 30, 81,
10:10, 20, 30, 80,
11:11, 22, 30, 79,
12:12, 24, 30, 78,
13:13, 26, 30, 77,
14:14, 28, 30, 76,
15:15, 30, 30, 75,
16:16, 30, 32, 74,
17:17, 30, 34, 73,
18:18, 30, 36, 72,
19:19, 30, 38, 71,
20:20, 30, 40, 70,
21:21, 30, 42, 69,
22:22, 30, 44, 68,
23:23, 30, 46, 67,
24:24, 30, 48, 66,
25:25, 30, 50, 65,
26:26, 30, 52, 64,
27:27, 30, 54, 63,
28:28, 30, 56, 62,
29:29, 30, 58, 61,
:30, 30, 60, 60,
30:30, 31, 59, 62,
31:30, 32, 58, 64,
32:30, 33, 57, 66,
33:30, 34, 56, 68,
34:30, 35, 55, 70,
35:30, 36, 54, 72,
36:30, 37, 53, 74,
37:30, 38, 52, 76,
38:30, 39, 51, 78,
39:30, 40, 50, 80,
40:30, 41, 49, 82,
41:30, 42, 48, 84,
42:30, 43, 47, 86,
43:30, 44, 46, 88,
44:30, 45, 45, 90,
45:06, 12, 24, 54,
46:06, 18, 18, 66,
47:09, 12, 48, 81,
48:12, 18, 30, 48,
49:12, 18, 42, 84,
50:15, 18, 54, 75,
:15, 30, 30, 75,
51:18, 24, 48, 78,
52:18, 30, 30, 54,
53:24, 27, 63, 84,
54:24, 30, 54, 84,
:30, 45, 45, 90,
55:42, 54, 54, 78,
56:48, 54, 66, 84,
前面44个有规律:\(\D\frac{\sin(x)\sin(\pi/2-x)}{\sin(2x)\sin(\pi/2)}=1\)
后面的好像没有规律?
如何利用这 56 个算式,譬如:从这 56 个算式到 8 楼,
01:01, 02, 30, 89,\(\Rightarrow\)001:01, 28, 091, 02, 28, 30,
29:29, 30, 58, 61,\(\Rightarrow\)002:01, 29, 061, 01, 30, 58,
01:01, 02, 30, 89,\(\Rightarrow\)003:01, 29, 089, 02, 29, 30,
52:18, 30, 30, 54,\(\Rightarrow\)123:18, 24, 054, 24, 30, 30,
如何利用这 56 个算式到 4 楼,...
northwolves
发表于 2021-5-7 08:27:13
$ \frac{sin(x)sin(90-x)}{sin(2x)sin(30)},x\in$
$ \frac{sin(x)sin(90-x)}{sin(30)sin(2x)},x\in$
$ \frac{sin(30)sin(2x)}{sin(x)sin(90-x)},x\in$
wayne
发表于 2021-5-7 09:18:43
至于要找规律。因为$\sin (a) \sin (b)-\sin (x) \sin (y) = \cos (a-b)-\cos (a+b)-\cos (x-y)+\cos (x+y) = 0$ , 形式是四个数的余弦,要让余弦和为0,我们容易联想到形式 $\sum _{k=1}^n \cos (\frac{2k \pi }{n}) = 0$
于是,我们开始往这个形式拼凑。${\pi-a-b, b-a,\pi-x-y,y-x}$这四个数在$$里,准确的说是分别取模为 $0,90,180,270$
mathe
发表于 2021-5-7 11:40:58
wayne转化为4个余弦之和为0以后,我们还可以把每个余弦转化为一对共轭单位复数的和的一半,于是转化为最多8个有理角度的单位向量的和为0的情况分析。
于是我们可以借用正多边形对角线交点分析的文章的结论:http://math.mit.edu/~poonen/papers/ngon.pdf
可能的选项有
(R7:R3)
(R5:3R3)
(R5:R3)+R2
R5+R3
R3+R3+R2
R2+R2+R2+R2
比如R7:R3,我们可以选择7个单位根$\exp(\frac{2k\pi i}7), k=0,1,2,3,4,5,6$和3个单位根的相反数$-\exp(\frac{2k\pi i}3), k=0,1,2$, 然后将双方的1和-1抵消,余下8个单位向量和可以为零,而且分成两组共轭的单位向量。只是这组结果其中有7次单位根,不符合整数角度的条件
mathe
发表于 2021-5-7 14:52:35
如果我们查看R5:3R3, 为了保持单位向量的共轭性,3个R3中一个必须抵消R5中的1(自共轭),另外两个只能抵消R5中两个共轭的单位根。
如果$exp(\pm\frac{2\pi i}5)$被抵消,那么需要留下$exp(\pm\frac{4\pi i}5)$,并且产生$-exp(\pm\frac{2\pi i}5\pm\frac{2\pi i}3)$,而抵消1又产生$-exp(\pm\frac{2\pi i}3)$
所以得到8个共轭单位根$exp(\pm\frac{4\pi i}5), -exp(\pm\frac{2\pi i}5\pm\frac{2\pi i}3),-exp(\pm\frac{2\pi i}3) $,这个应该可以得出一组特殊解。另外类似抵消$exp(\pm\frac{4\pi i}5)$而留下$exp(\pm\frac{2\pi i}5)$也会产生一组可能的候选解
而对于(R5:R3)+R2,为了保持共轭性,其中R2只能代表$\pm i$, (R5:R3)同样只能抵消实数1,所以只能最多得到一组解。
而R3+R5对应使用两个1的情况(或者旋转180度对应两个-1?)也就是少数解。
但是R3+R3+R2中R2只能$\pm i$,但是两个R3可以相互共轭,而它们各自的起始角度就可以任意选择,所以如果可以对应无限组有理角度解(当然如果限定整数角度,会有限组)。
最后R2+R2+R2+R2也可以相互共轭,有无数组选择
northwolves
发表于 2021-5-7 15:55:52
$\frac{\sin(6^\circ)\sin(10^\circ)\sin(11^\circ)\sin(54^\circ)}{\sin(10^\circ)\sin(11^\circ)\sin(12^\circ)\sin(24^\circ)}=1$
$\frac{\sin(6^\circ)\sin(10^\circ)\sin(11^\circ)\sin(84^\circ)}{\sin(10^\circ)\sin(11^\circ)\sin(12^\circ)\sin(30^\circ)}=1$
mathe
发表于 2021-5-7 16:18:06
R3+R3+R2的情况说明
$a+b, a-b+pi, x-y+pi, x+y$分别为$pi/2, u, u+{2\pi}/3, u-{2\pi}/3$
其中$u, u+{2\pi}/3, u-{2\pi}/3$中必有两个属于$a+b, a-b+pi$或$x-y+pi, x+y$,所以它们之差${2\pi}/3$等于$pi-2y$或$pi-2b$,也就是得出一个角为$\frac{\pi}6$,正好是b或y是30°
王守恩
发表于 2021-5-8 07:16:01
本帖最后由 王守恩 于 2021-5-8 07:23 编辑
northwolves 发表于 2021-5-7 15:55
$\frac{\sin(6^\circ)\sin(10^\circ)\sin(11^\circ)\sin(54^\circ)}{\sin(10^\circ)\sin(11^\circ)\sin(12^ ...
3楼的方法还是不能丢,譬如:
\(\D\frac{\sin(30^\circ)\sin(64^\circ)\ }{\sin(32^\circ)\sin(58^\circ)\ }=\frac{(\sin(15^\circ)\sin(75^\circ))\sin(64^\circ)\ \ }{(\sin(16^\circ)\sin(74^\circ))\sin(58^\circ)\ \ }=\frac{\sin(30^\circ)(\sin(32^\circ)\sin(58^\circ))\ \ }{\sin(32^\circ)(\sin(29^\circ)\sin(61^\circ))\ \ }=\frac{\sin(15^\circ)\sin(75^\circ)\sin(32^\circ)\sin(58^\circ)\ \ \ }{\sin(16^\circ)\sin(74^\circ)\sin(29^\circ)\sin(61^\circ)\ \ \ }=\frac{\sin(15^\circ)\sin(75^\circ)\sin(16^\circ)\sin(74^\circ)\sin(58^\circ)\ \ \ \}{\sin(8^\circ)\sin(82^\circ)\sin(74^\circ)\sin(29^\circ)\sin(61^\circ)\ \ \ \}\)