dlsh 发表于 2021-5-31 23:08:36

内角平分定理的几种复数证明方法

https://bbs.emath.ac.cn/data/attachment/forum/202001/29/220232ytmxmlt4j3o6a4x4.png
如图,假设BD是角平分线,证明:AB : AC=AD : DC
方法1:参考https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=17116&pid=83034&fromuid=1134,这是最简单的方法。
方法2:https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=17116&pid=83039&fromuid=1134
方法3:https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=17116&pid=89053&fromuid=1134

mathematica 发表于 2021-6-1 08:29:08

做垂足,难道不是最简单的办法吗?

dlsh 发表于 2021-6-1 21:48:03

https://bbs.emath.ac.cn/data/attachment/forum/202002/02/221300twwrunhwnr975wbb.png
如图,已知AD是平分线,证明AC:AB=CD:BC
证明:假设B在原点,c=1,\(\frac{\overrightarrow{AC}}{\overrightarrow{AB}}=\lambda v,可求得a=\frac{1}{1-\lambda v},\bar a=\frac{v}{v-\lambda}\),
AD的方程是:\(z-\frac{v-\lambda}{1-\lambda v}\bar z=\frac{1}{1-\lambda v}-\frac{v}{1-\lambda v}\)
与实轴的方程联立可以求出\(d=\frac{1}{1+\lambda},所以\frac{\overrightarrow{DC}}{\overrightarrow{DB}}=-\lambda\)

nemwark 发表于 2021-6-2 15:52:03

\(\overrightarrow{BA}\times\overrightarrow{BD} = 2 S_{\Delta{}ABD}\)
\(\overrightarrow{DA}\times\overrightarrow{DB} = 2 S_{\Delta{}ABD}\)
\(\overrightarrow{BC}\times\overrightarrow{BD} = 2 S_{\Delta{}BCD}\)
\(\overrightarrow{DC}\times\overrightarrow{DB} = 2 S_{\Delta{}BCD}\)
\(\angle_{ABD} = \angle_{CBD} =\alpha\)
\(\angle_{BDC} = \beta\)
\(|AB|\cdot|BD|\cos\alpha = |AD|\cdot|BD||\cos(\pi-\beta)| \)

\(|BC|\cdot|BD|\cos\alpha = |CD|\cdot|BD|\cos\beta \)

\[|AB|:|BC|=|AD|:|CD|\]


王守恩 发表于 2021-6-3 07:26:47

已知AD是角平分线,证明 \(\frac{AB}{AC}=\frac{DB}{DC}\)

\(\D\frac{AB}{AC}=\frac{\sin(b)}{\frac{\sin(b)\sin(a+b)}{\sin(b-a)}}=\frac{\sin(b-a)}{\sin(a+b)}=\frac{\sin(a)}{\frac{\sin(a)\sin(a+b)}{\sin(b-a)}}=\frac{DB}{DC}\)

补充内容 (2021-6-4 05:40):
b=∠BAD

补充内容 (2021-6-4 05:45):
订正:a=∠BAD,b=∠BDA

王守恩 发表于 2021-6-3 08:30:54

王守恩 发表于 2021-6-3 07:26
已知AD是角平分线,证明 \(\frac{AB}{AC}=\frac{DB}{DC}\)

\(\D\frac{AB}{AC}=\frac{\sin(b)}{\frac{\si ...

已知AD是角不均分线(平分只是特殊选项,不均分才是普遍现象),

证明 \(\ \frac{AB*DC*\sin(x)\ \ }{AC*DB*\sin(y)\ \ }\equiv 1\ \ \ \    ∠BAC=x+y\)

\(\D\frac{AB*DC*\sin(x)\ \ }{AC*DB*\sin(y)\ \ }\equiv\frac{\sin(b)*\frac{\sin(y)\sin(x+b)\ \ }{\sin(b-y)}*\sin(x)\ \ \ \ }{\frac{\sin(b)\sin(x+b)\ \ }{\sin(b-y)}*\sin(x)*\sin(y)\ \ \ \ }\equiv 1\)

dlsh 发表于 2021-6-3 22:47:10

已知:`BD`是`ΔABC`的角平分线,求证:`AB:BC=AD:CD`.
证明:不妨将`B`置于原点,`D`置于正实轴上,那么`c=λ\bar a,\bar c=λa,d=\bar d`
由`A,C,D`共线得$(a-d)/(\bar a-\bar d)=(c-d)/(\bar c-\bar d)$ $→(a-d)/(c-d)=(\bar a-d)/(\bar c-d)=(a-\bar a)/(c-\bar c)=(a-\bar a)/(λ\bar a-λa)=-1/λ=-(\bar a)/c$
取模即得$AB:BC=AD:CD$
页: [1]
查看完整版本: 内角平分定理的几种复数证明方法