天山草——梅涅劳斯定理
本帖最后由 dlsh 于 2022-2-5 22:29 编辑天山草老师十多年前发现的一条与梅涅劳斯定理类似的定理。
天山草——梅涅劳斯定理
本帖最后由 TSC999 于 2022-2-6 12:43 编辑
梅涅劳斯定理是中学生应当掌握的,但是这个定理不容易记住,为了辅导小孙子功课,当年想出了这么一个方便记忆的东西,可视为广义梅涅劳斯定理。
原帖子是 2009 年发在【数学中国】上,帖名是 “梅涅劳斯新解”, 网址为 http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=24101&highlight=%C3%B7%C4%F9%C0%CD%CB%B9%B6%A8%C0%ED%D0%C2%BD%E2 楼主这个程序看不懂。D、E、F 的坐标为啥是那样表达的?线段的长度又是如何通过点的坐标计算的? 另外,程序代码应当随帖子发上来,这样便于读者下载研究。 Clear["Global`*"]
\!\(\*OverscriptBox["a", "_"]\) = 1/a;
\!\(\*OverscriptBox["b", "_"]\) = 1/b;
\!\(\*OverscriptBox["c", "_"]\) =
1/c;(*假设\ABC外接圆圆心在原点,并且外接圆是单位圆*)
sol = Solve[{f + a b
\!\(\*OverscriptBox["f", "_"]\) == a + b, f - k
\!\(\*OverscriptBox["f", "_"]\) == u, d + c b
\!\(\*OverscriptBox["d", "_"]\) == c + b, d - k
\!\(\*OverscriptBox["d", "_"]\) == u, e + a c
\!\(\*OverscriptBox["e", "_"]\) == a + c, e - k
\!\(\*OverscriptBox["e", "_"]\) == u}, {d,
\!\(\*OverscriptBox["d", "_"]\), e,
\!\(\*OverscriptBox["e", "_"]\), f,
\!\(\*OverscriptBox["f", "_"]\)}];(*假设直线EF的复斜率等于k,u是常数*)
\!\(\*OverscriptBox["d", "_"]\) =
\!\(\*OverscriptBox["d", "_"]\) /. sol;
\!\(\*OverscriptBox["e", "_"]\) =
\!\(\*OverscriptBox["e", "_"]\) /. sol;
\!\(\*OverscriptBox["f", "_"]\) =
\!\(\*OverscriptBox["f", "_"]\) /. sol;
Simplify[{
\!\(\*OverscriptBox["d", "_"]\),
\!\(\*OverscriptBox["e", "_"]\),
\!\(\*OverscriptBox["f", "_"]\), , (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\))/(
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\)), (
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\))/(
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)), (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\))/(
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\)), , (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\))/(
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\)) (
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\))/(
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)) (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\))/(
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\))}](*验证梅涅劳斯定理*)
Simplify[{(
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\))/(
\!\(\*OverscriptBox["f", "_"]\) -
\!\(\*OverscriptBox["a", "_"]\)), (
\!\(\*OverscriptBox["d", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\))/(
\!\(\*OverscriptBox["e", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)), (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\))/(
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["a", "_"]\)), (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\))/(
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)), (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\))/(
\!\(\*OverscriptBox["f", "_"]\) -
\!\(\*OverscriptBox["a", "_"]\)) (
\!\(\*OverscriptBox["d", "_"]\) -
\!\(\*OverscriptBox["f", "_"]\))/(
\!\(\*OverscriptBox["e", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)) (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["e", "_"]\))/(
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["a", "_"]\)) (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\))/(
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\))}](*验证天山草梅涅劳斯定理新发现*)
(AB/BF) (FD/DE) (EF/FD) (DB/BC) (CE/EA) = 1
这里用共轭向量代替长度,因为每一个分式都在一条直线上。 本帖最后由 TSC999 于 2022-2-9 09:35 编辑
按楼主的思路,我也来个梅涅劳斯定理及定理新解的证明方法。见下面图片。
思路要点如下: 已知两个点的复数坐标,这两点之间的距离如何表达才能避免出现根式,或者出现绝对值符号。最好的办法就是利用向量方法。对于本例,使用向量比表示距离比,是典型例子。
程序代码:
Clear["Global`*"];
b = 0; c = 1;d = -v;f = -u a; e = (a u (v + 1) - (u + 1) v)/( u - v);
Simplify[( f - a )/(f - b) ( d - b )/(d - c) ( e - c )/(e - a)]
Simplify[( e - c )/(e - a) ( b - a )/(b - f) ( e - f )/(e - d) ( b - d )/(b - c)] 本帖最后由 TSC999 于 2022-2-9 09:41 编辑
下面再用向量比的方法证明西瓦定理。
程序代码如下:
Clear["Global`*"];
b = 0; \!\(\*OverscriptBox[\(b\), \(_\)]\) = 0; c = 1;
\!\(\*OverscriptBox[\(c\), \(_\)]\) = 1;d = v;
\!\(\*OverscriptBox[\(d\), \(_\)]\) = v;f = u a;
\!\(\*OverscriptBox[\(f\), \(_\)]\) = u \!\(\*OverscriptBox[\(a\), \(_\)]\);
FourPoint := ((\!\(\*OverscriptBox[\(c\), \(_\)]\) d-c\!\(\*OverscriptBox[\(d\), \(_\)]\)) (a - b)- (\!\(\*OverscriptBox[\(a\), \(_\)]\) b-a\!\(\*OverscriptBox[\(b\), \(_\)]\)) (c - d))/((a - b) (\!\(\*OverscriptBox[\(c\), \(_\)]\) -
\!\(\*OverscriptBox[\(d\), \(_\)]\)) - (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) (c - d));
\!\(\*OverscriptBox[\(FourPoint\), \(_\)]\) := -(((c \!\(\*OverscriptBox[\(d\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\) d) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) -
( a \!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\) b) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)))/((a - b) (\!\(\*OverscriptBox[\(c\), \(_\)]\) -
\!\(\*OverscriptBox[\(d\), \(_\)]\)) - (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) (c - d)));(*直线 AB 与 CD 的交点复坐标*)
o = Simplify];
\!\(\*OverscriptBox[\(o\), \(_\)]\) = Simplify[\!\(\*OverscriptBox[\(FourPoint\), \(_\)]\)];
e = Simplify];
\!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify[\!\(\*OverscriptBox[\(FourPoint\), \(_\)]\)];
Print["o = ", o, ",e = ", e];
k = Simplify[( d - b )/(c - d) ( e - c )/(a - e) ( f - a )/(b - f)];
Print["\!\(\*FractionBox[\(BD\), \(DC\)]\)\!\(\*FractionBox[\(CE\), \
\(EA\)]\)\!\(\*FractionBox[\(AF\), \(FB\)]\) = ", k];
应该写进教材
页:
[1]