求证∠ACK=∠BCF
如图所示,锐角三角形∆ABC中AC<BC。D,E,F分别是各边的中点。Dd垂直于AC,Ee垂直于BC。CF交Dd于点d,交Ee于点e。Ad和Be相交于点K。求证∠ACK=∠BCF 坐标系法。 似乎应该是 ∠ACK ≠ ∠BCF 才对。可以作一个 ∆ABC,让 ∠ACB=89°(略小于直角即可),∠ABC=30°,实际度量一下。
当 ∠ACB 无限接近 90° 时,则点 d、e 均无限接近点 F,
点 K(源于 Ad 和 Be 的交点),也将无限接近点 F(此处不够严谨),
但此时 ∠ACF > ∠BCF(∵ AC<BC) 楼主没错 钝角也对 什么情况下∠ACK=∠BCF=∠KCF? 不想画图了,令Cd=Ad=x,de=y,eF=z,Ce=Be=x+y,梅涅劳斯定理:三角形dAF被直线KeB所截,可得Kd=xy/(2z+y),三角形eBF被直线dKA所截,可得Ke=(x+y)y/(2z+y),则KA/KB=(Ad-Kd)/(Be+Ke)=xz/[(x+y)(z+y)],
设CK交AB于J,BK交AC于S,梅涅劳斯定理:三角形ABS被直线CKJ所截,可得AJ/JB=KS/BK*CA/SC,三角形CAd被直线SKe所截,可得CS/SA=Kd(x+y)/[(x-Kd)y],即CA/SC=x(y+Kd)/,
三角形Kde被直线CSA所截,最终可得KS=Ke(x-Kd)/(y+Kd),BK=x+y+Ke,以上带入AJ/JB=KS/BK*CA/SC=xz/[(x+y)(z+y)],
即KA/KB=AJ/JB,即JK平分角AKB,
设Dd交Ce于O(三角形ABC的外接圆圆心),Dd交CK于P,Ee交AB于E',求证∠ACK=∠BCF即是证明∠CPD=∠BeE,即证∠dPK=∠KeE',即证1/2∠AKB=∠JKB=∠DOE'=∠C,∠AOB是∠C的圆心角,及证明∠AKB=∠AOB,即证明ABOK四点共圆,在几何画板上画了下,是共圆的,上班了,有空了,看下怎么证明共圆
补充内容 (2022-8-31 22:59):
∠AKB=∠Kde+∠Ked=2∠ACd+2∠BCd=2C,证毕。 aimisiyou 发表于 2022-8-29 17:50
什么情况下∠ACK=∠BCF=∠KCF?
Clear["Global`*"]
\!\(\*OverscriptBox["a", "_"]\) = 1/a;
\!\(\*OverscriptBox["b", "_"]\) = 1/b;
\!\(\*OverscriptBox["c", "_"]\) = 1/c;
Midpoint := (a + b)/2;
\!\(\*OverscriptBox["Midpoint", "_"]\) := (
\!\(\*OverscriptBox["a", "_"]\) +
\!\(\*OverscriptBox["b", "_"]\))/2;(*中点公式*)
kAB := (a - b)/(
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\));
\!\(\*OverscriptBox["kAB", "_"]\) := 1/kAB;(*复斜率定义*)
kAB := kAB/kAB;(*e^(2iB) 等于复斜率相除*)
\!\(\*OverscriptBox["Jd", "_"]\) := -((a1 - k1
\!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
\!\(\*OverscriptBox["a2", "_"]\)))/(
k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
Jd := -((k2 (a1 - k1
\!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
\!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
FourPoint := ((
\!\(\*OverscriptBox["c", "_"]\) d - c
\!\(\*OverscriptBox["d", "_"]\)) (a - b) - (
\!\(\*OverscriptBox["a", "_"]\) b - a
\!\(\*OverscriptBox["b", "_"]\)) (c - d))/((a - b) (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)) - (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\)) (c - d));(*过两点A和B、C和D的交点*)
\!\(\*OverscriptBox["FourPoint", "_"]\) := -(((c
\!\(\*OverscriptBox["d", "_"]\) -
\!\(\*OverscriptBox["c", "_"]\) d) (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\)) - ( a
\!\(\*OverscriptBox["b", "_"]\) -
\!\(\*OverscriptBox["a", "_"]\) b) (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)))/((a - b) (
\!\(\*OverscriptBox["c", "_"]\) -
\!\(\*OverscriptBox["d", "_"]\)) - (
\!\(\*OverscriptBox["a", "_"]\) -
\!\(\*OverscriptBox["b", "_"]\)) (c - d)));
e = Midpoint;
\!\(\*OverscriptBox["e", "_"]\) =
\!\(\*OverscriptBox["Midpoint", "_"]\); d = Midpoint;
\!\(\*OverscriptBox["d", "_"]\) =
\!\(\*OverscriptBox["Midpoint", "_"]\); f = Midpoint;
\!\(\*OverscriptBox["f", "_"]\) =
\!\(\*OverscriptBox["Midpoint", "_"]\);
d0 = Jd, c];
\!\(\*OverscriptBox["d0", "_"]\) =
\!\(\*OverscriptBox["Jd", "_"]\), c]; e0 =
Jd, c];
\!\(\*OverscriptBox["e0", "_"]\) =
\!\(\*OverscriptBox["Jd", "_"]\),
c];(*d0和e0代替d和e,防止死循环*)
k = FourPoint;
\!\(\*OverscriptBox["k", "_"]\) =
\!\(\*OverscriptBox["FourPoint", "_"]\);
Simplify[{1, d0,
\!\(\*OverscriptBox["d0", "_"]\), e0,
\!\(\*OverscriptBox["e0", "_"]\), k,
\!\(\*OverscriptBox["k", "_"]\)}]
Simplify[{2, kAB, kAB}]
Simplify[{3, kAB/(-a c), -a b/kAB, ,
kAB}](*AC和AB的复斜率是-ac,-ab,验证\ACK=\BCF*)
Simplify[{4, kAB, b/a}](*验证\AKB=2C*)
第三行结果说明相等条件需要解二次方程,而不是四次。
从计算结果看,还有更深刻的几何意义。 假设外接圆心O在原点,这些结果是各点对应的复数。
你需要掌握复斜率概念,才能理解可以看签名链接,不过这篇论文把复斜率写成共轭比。第三项表示$e^{2i\angle ACK}$,$e^{2i\angle BCF}$,用以验证这两个角相等。程序中有一个错误,所以不相等。修改了程序,用向量商也可以证明,标记31说明\(\frac{\overrightarrow{CK}}{\overrightarrow{CA}}=\frac{1}{2}\frac{\overrightarrow{CB}}{\overrightarrow{CF}}\)
页:
[1]