黑白线性相关 发表于 2022-9-8 19:08:27

关于线性代数1

问: 设a1,a2,a3是齐次线性方程AX=0的一个基础解系.证明:a1+a2,a2+a3,a3+a1也是齐次线性方程的一个基础解系

答:\[\begin{bmatrix}a1+a2&a2+a3&a3+a1\end{bmatrix}=\begin{bmatrix}a1&a2&a3\end{bmatrix}\begin{bmatrix}1&0&1\\1&1&0\\0&1&1\end{bmatrix}\]
可知【a1+a2,a2+a3,a3+a1】可被【a1,a2,a3】线性表示, 同时由于行列式的值不等于0, 可知行列式可逆, 所以原等式可以变化为

\[\begin{bmatrix}a1+a2&a2+a3&a3+a1\end{bmatrix}\begin{bmatrix}1&0&1\\1&1&0\\0&1&1\end{bmatrix}^{-1}=\begin{bmatrix}a1&a2&a3\end{bmatrix}\]


可得两个向量组可以互相线性表示(等价向量组), 所以两个向量组等价,都是基础解系

页: [1]
查看完整版本: 关于线性代数1