寻找论坛才俊,求下面含参函数之最大值的最小值及其此时的参数值。
设函数\(f\left( x \right) = \text{Hypergeometric2F1}\left[ { - 1/2, - 1/2,1,{x^2}} \right] - \left( {1 + \frac{{3{x^2}}}{{10 + \sqrt {4 - 3{x^2}} }}} \right) - \frac{3}{{{2^{17}}}}{x^{10}}\left( {1 + \frac{{\left( {\frac{{79}}{{48}} + 19.7356722060508967x} \right)x^2}}{{\left( {1 + ax^b\left( {1 - x^c} \right)^d} \right)^e}}} \right)\)其中,\(a、b、c、d、e \in \RR\),\(0 < x < 1\)。求\(M = \mathop {\min }\limits_{a,b,c,d,e} \;\mathop {\max }\limits_{0 < x < 1} \left\{ {f\left( x \right)} \right\}\)及其此时的参数值。 这个函数看起来实在是太丑了! 论坛有人感兴趣吗,希望遇到能人之士,在次感谢 nyy 发表于 2023-7-31 08:48
这个函数看起来实在是太丑了!
又不是找对象或时装走秀,要漂亮干嘛?就是求主贴函数界的最小值,你会吗 本帖最后由 笨笨 于 2023-8-5 21:25 编辑
怎么把 while 加到下面这个程序里来终止程序从而得到主贴函数界的最小值和其下各参数a,b,c,d,e的值。
知下面图片中的程序是要往复迭代的,while 语句的终止条件是啥?
\=0.558
r=0.144
\=0.675
f:=1-r^x
g:=1-(1-\)/f[\] f[(x-1)/(\-1) \]
p0:=((1-Floor])\ f/f[\]+Floor]g)^\
p:=p0
H:=1/(3/2^17 x^10) (Hypergeometric2F1[-1/2,-1/2,1,x^2]-(1+(3x^2)/(10+Sqrt)))
W:=(( 79/48+19.7356722060508967x) x^2)/(1+a x^b(1-x^c)^d)^e
U:=1/2 \!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\)^2\)\)
u:=-\!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\)
\*FractionBox[\(e\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\), \(1 + a\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\)] W, a, b, c, d, e]\)\)
v:=-\!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\)\
\*FractionBox[\(a\ e\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\ Log]\), \(1 + a\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\)] W, a, b, c, d, e]\)\)
w:=\!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\)\
\*FractionBox[\(a\ d\ e\
\*SuperscriptBox[\((p)\), \(b + c\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(\(-1\) + d\)]\ Log]\), \(1 + a\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\)] W, a, b, c, d, e]\)\)
h:=-\!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\)
\*FractionBox[\(a\ e\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\ Log[1 -
\*SuperscriptBox[\((p])\), \(c\)]]\), \(1 + a\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]\)] W, a, b, c, d, e]\)\)
i:=-\!\(
\*UnderoverscriptBox[\(\\), \(k = 1\), \(99\)]\(\((1 + W, a, b, c, d, e] - H])\) W, a, b, c, d, e] Log[1 + a\
\*SuperscriptBox[\((p)\), \(b\)]\
\*SuperscriptBox[\((1 -
\*SuperscriptBox[\((p)\), \(c\)])\), \(d\)]]\)\)
UU:=U,b-t v,c-t w,d-t h,e-t i]
Er:=Hypergeometric2F1[-1/2,-1/2,1,x^2]-(1+(3x^2)/(10+Sqrt))-3/2^17 x^10 (1+W)
a=4.6
b=0.457
c=2.657
d=0.95
e=1.2
t=0.0001
U>UU
a=a-t u
b=b-t v
c=c-t w
d=d-t h
e=e-t i
Maximize[{Abs],0<x<1},x]
U
UU
页:
[1]