所有圆的面积之和等于多少?
$\sum _{n=1}^{\infty } \pi\left(\frac{4}{4 n^2+12 n+17}\right)^2=\frac{\pi\left(23409 \pi\sqrt{2} \tanh \left(\sqrt{2} \pi \right)-46818 \pi ^2 \text{sech}^2\left(\sqrt{2} \pi \right)\right)-94720}{374544}\approx0.07548199441265654953699$ northwolves 发表于 2025-2-16 10:28
$\sum _{n=1}^{\infty } \pi\left(\frac{4}{4 n^2+12 n+17}\right)^2=\frac{\pi\left(23409 \pi\sq ...
这些圆圆心所在的轨迹是什么?轨迹方程呢? nyy 发表于 2025-2-16 14:46
这些圆圆心所在的轨迹是什么?轨迹方程呢?
$2(x-3)^2+9y^2=18$ $y=\frac{1}{3} \sqrt{8 x^2-12 x}$ 本帖最后由 nyy 于 2025-2-17 09:22 编辑
以左下角为坐标原点
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
(*圆心坐标与半径赋值*)
{xa,ya,ra}={1,0,1};
{xb,yb,rb}={1/2,0,1/2};
{xc,yc,rc}={0,1/2,1/2};
(*求解出第一个圆的圆心坐标与半径*)
ans=Solve[{
(x1-xa)^2+(y1-ya)^2==(r1-ra)^2,
(x1-xb)^2+(y1-yb)^2==(r1+rb)^2,
(x1-xc)^2+(y1-yc)^2==(r1-rc)^2,(*两个圆内切*)
r1>0&&r1<(1/2)(*限制变量范围*)
},{x1,y1,r1}]
{x1,y1,r1}=Values]];(*第一个圆的圆心坐标与半径*)
(*子函数,用来求解下一个圆的圆心坐标与半径*)
nextxyr:=Module[{x1=xyr[],y1=xyr[],r1=xyr[],ans,out},
ans=Solve[{
(x2-xa)^2+(y2-ya)^2==(r2-ra)^2,
(x2-xb)^2+(y2-yb)^2==(r2+rb)^2,
(x2-x1)^2+(y2-y1)^2==(r2+r1)^2,(*两个圆外切,不同点*)
r2>0&&r2<r1(*限制变量范围*)
},{x2,y2,r2}];
out=Values]](*圆心与坐标弄出来*)
]
(*迭代计算圆心坐标与半径*)
aaa=NestList
(*找出圆心的坐标与半径的通项公式*)
bbb=FindSequenceFunction],n]&/@{1,2,3}
(*消除变量n,得到圆心坐标的轨迹*)
ccc=Eliminate]&&y==bbb[],{n}]
第一个圆的圆心坐标与半径为
\[\left\{\left\{\text{x1}\to \frac{4}{11},\text{y1}\to \frac{20}{33},\text{r1}\to \frac{4}{33}\right\}\right\}\]
圆心坐标与半径列表为
{{4/11, 20/33, 4/33}, {4/19, 28/57, 4/57}, {12/89, 36/89, 4/89}, {4/
43, 44/129, 4/129}, {4/59, 52/177, 4/177}, {12/233, 60/233, 4/
233}, {4/99, 68/297, 4/297}, {4/123, 76/369, 4/369}, {12/449, 84/
449, 4/449}, {4/179, 92/537, 4/537}, {4/211, 100/633, 4/633}, {12/
737, 108/737, 4/737}, {4/283, 116/849, 4/849}, {4/323, 124/969, 4/
969}, {12/1097, 132/1097, 4/1097}, {4/411, 140/1233, 4/1233}, {4/
459, 148/1377, 4/1377}, {12/1529, 156/1529, 4/1529}, {4/563, 164/
1689, 4/1689}, {4/619, 172/1857, 4/1857}, {12/2033, 180/2033, 4/
2033}}
坐标与半径的通项公式为
\[\left\{\frac{12}{4 n^2+12 n+17},\frac{4 (2 n+3)}{4 n^2+12 n+17},\frac{4}{4 n^2+12 n+17}\right\}\]
圆心轨迹方程为
\[-9 y^2 == -12 x + 8 x^2\] nyy 发表于 2025-2-17 09:21
以左下角为坐标原点
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
(*子函数,四面体体积公式,a,b,c分别是从一个顶点出发的三条棱,x,y,z分别是对棱*)
fun:=Sqrt/288]
(*根据四面体体积等于零,得到半径的递推公式*)
ans=Solve==0,{r2}]
\[\left\{\left\{\text{r2}\to \frac{\text{r1}^2-2 \sqrt{\text{r1}^3-2 \text{r1}^4}+\text{r1}}{9 \text{r1}^2-2 \text{r1}+1}\right\},\left\{\text{r2}\to \frac{\text{r1}^2+2 \sqrt{\text{r1}^3-2 \text{r1}^4}+\text{r1}}{9 \text{r1}^2-2 \text{r1}+1}\right\}\right\}\]
选用第一个公式
由r1递推得到r2 再来个反演的图:
本帖最后由 nyy 于 2025-2-17 12:27 编辑
nyy 发表于 2025-2-17 09:55
\[\left\{\left\{\text{r2}\to \frac{\text{r1}^2-2 \sqrt{\text{r1}^3-2 \text{r1}^4}+\text{r1}}{9 \ ...
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
(*子函数,四面体体积公式,a,b,c分别是从一个顶点出发的三条棱,x,y,z分别是对棱*)
fun:=Sqrt/288]
(*根据四面体体积等于零,得到半径的递推公式*)
ans=Solve==0,{r2}]
(*用Pi而不是n,因为Pi能化简出最后的结果,而n不能*)
aaa=ans[]/.{r1->4/(4*Pi^2+12*Pi+17)}//Simplify(*这个是下一个圆的半径*)
bbb=ans[]/.{r1->4/(4*Pi^2+12*Pi+17)}//Simplify(*这个是上一个圆的半径的表达式*)
ccc=aaa/.{Pi->n}(*把Pi替换成n,这样更好看些*)
\[\left\{\text{r2}\to \frac{4}{33+20 \pi +4 \pi ^2}\right\}\]
\[\left\{\text{r2}\to \frac{4}{9+4 \pi +4 \pi ^2}\right\}\]
由r1=4/(4*n^2+12*n+17)表达式代入得到r2的表达式
\[\left\{\text{r2}\to \frac{4}{4 n^2+20 n+33}\right\}\]
页:
1
[2]