- 注册时间
- 2021-11-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 9086
- 在线时间
- 小时
|
本帖最后由 nyy 于 2025-2-17 09:22 编辑
以左下角为坐标原点
- Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
- (*圆心坐标与半径赋值*)
- {xa,ya,ra}={1,0,1};
- {xb,yb,rb}={1/2,0,1/2};
- {xc,yc,rc}={0,1/2,1/2};
- (*求解出第一个圆的圆心坐标与半径*)
- ans=Solve[{
- (x1-xa)^2+(y1-ya)^2==(r1-ra)^2,
- (x1-xb)^2+(y1-yb)^2==(r1+rb)^2,
- (x1-xc)^2+(y1-yc)^2==(r1-rc)^2,(*两个圆内切*)
- r1>0&&r1<(1/2)(*限制变量范围*)
- },{x1,y1,r1}]
- {x1,y1,r1}=Values[ans[[1]]];(*第一个圆的圆心坐标与半径*)
- (*子函数,用来求解下一个圆的圆心坐标与半径*)
- nextxyr[xyr_]:=Module[{x1=xyr[[1]],y1=xyr[[2]],r1=xyr[[3]],ans,out},
- ans=Solve[{
- (x2-xa)^2+(y2-ya)^2==(r2-ra)^2,
- (x2-xb)^2+(y2-yb)^2==(r2+rb)^2,
- (x2-x1)^2+(y2-y1)^2==(r2+r1)^2,(*两个圆外切,不同点*)
- r2>0&&r2<r1(*限制变量范围*)
- },{x2,y2,r2}];
- out=Values[ans[[1]]](*圆心与坐标弄出来*)
- ]
- (*迭代计算圆心坐标与半径*)
- aaa=NestList[nextxyr,{x1,y1,r1},20]
- (*找出圆心的坐标与半径的通项公式*)
- bbb=FindSequenceFunction[aaa[[All,#]],n]&/@{1,2,3}
- (*消除变量n,得到圆心坐标的轨迹*)
- ccc=Eliminate[x==bbb[[1]]&&y==bbb[[2]],{n}]
复制代码
第一个圆的圆心坐标与半径为
\[\left\{\left\{\text{x1}\to \frac{4}{11},\text{y1}\to \frac{20}{33},\text{r1}\to \frac{4}{33}\right\}\right\}\]
圆心坐标与半径列表为
{{4/11, 20/33, 4/33}, {4/19, 28/57, 4/57}, {12/89, 36/89, 4/89}, {4/
43, 44/129, 4/129}, {4/59, 52/177, 4/177}, {12/233, 60/233, 4/
233}, {4/99, 68/297, 4/297}, {4/123, 76/369, 4/369}, {12/449, 84/
449, 4/449}, {4/179, 92/537, 4/537}, {4/211, 100/633, 4/633}, {12/
737, 108/737, 4/737}, {4/283, 116/849, 4/849}, {4/323, 124/969, 4/
969}, {12/1097, 132/1097, 4/1097}, {4/411, 140/1233, 4/1233}, {4/
459, 148/1377, 4/1377}, {12/1529, 156/1529, 4/1529}, {4/563, 164/
1689, 4/1689}, {4/619, 172/1857, 4/1857}, {12/2033, 180/2033, 4/
2033}}
坐标与半径的通项公式为
\[\left\{\frac{12}{4 n^2+12 n+17},\frac{4 (2 n+3)}{4 n^2+12 n+17},\frac{4}{4 n^2+12 n+17}\right\}\]
圆心轨迹方程为
\[-9 y^2 == -12 x + 8 x^2\] |
|