怎样求解如下方程组
x1+x2+x3=dx1^2+x2^2+x3^2=e
x1^3+x2^3+x3^3=f
希望高人解答。 1# wsc810
x_1+x_2+x_3=d (1)
x_1^2+x_2^2+x_3^2=e (2)
x_1^3+x_2^3+x_3^3=f (3)
消元----------------消去x2,x3:
为方便起见,设x1为x,x2为y,x3为z.
由2yz=(y+z)^2-(y^2+z^2)得: 2yz= (d-x)^2-(e-x^2)
由(y+z)(y^2+z^2)=(y^3+z^3)+yz(y+z)得: (d-x)(e-x)=f-x^3+yz(d-x)
化简得:2(d-x)(e-x)=2f-2x^3+(2x^2-2dx+d^2-e)(d-x)
这是一个一元三次方程。。。。。 利用方程中变量的对称性可以得到对于一般方程(n=3..9)的解:
x1+x2+x3+...+xn=a1
x1^2+x2^2+x3^2+...+xn^2=a2
x1^3+x2^3+x3^3+...+xn^3=a3
.................................................................
x1^n+x2^n+x3^n+...+xn^n=an
对于n=3
x1,x2,x3是下列方程的根(关于t):
a1^3-3*a1*a2+2*a3+(-3*a1^2+3*a2)*t+6*a1*t^2-6*t^3=0
对于n=4
x1,x2,x3,x4是下列方程的根(关于t):
a1^4-6*a1^2*a2+3*a2^2+8*a1*a3-6*a4+(-4*a1^3+12*a1*a2-8*a3)*t+
(12*a1^2-12*a2)*t^2-24*a1*t^3+24*t^4=0
对于n=5
x1,x2,x3,x4,x5是下列方程的根(关于t)
a1^5-10*a1^3*a2+15*a1*a2^2+20*a1^2*a3-20*a2*a3-30*a1*a4+24*a5+
(-5*a1^4+30*a1^2*a2-15*a2^2-40*a1*a3+30*a4)*t+
(20*a1^3-60*a1*a2+40*a3)*t^2
+(-60*a1^2+60*a2)*t^3+120*a1*t^4-120*t^5=0
对于n=6
x1,x2,x3,x4,x5,x6是下列方程的根(关于t)
a1^6-15*a1^4*a2+45*a1^2*a2^2-15*a2^3+40*a1^3*a3-120*a1*a2*a3+
40*a3^2-90*a1^2*a4+90*a2*a4+144*a1*a5-120*a6+(-6*a1^5+60*a1^3*a2-
90*a1*a2^2-120*a1^2*a3+120*a2*a3+180*a1*a4-144*a5)*t+(30*a1^4-180*a1^2*a2+90*a2^2
+240*a1*a3-180*a4)*t^2+(-120*a1^3+360*a1*a2-
240*a3)*t^3+(360*a1^2-360*a2)*t^4-720*a1*t^5+720*t^6=0
对于n=7
x1,x2,x3,x4,x5,x6,x7是下列方程的根(关于t)
a1^7-21*a1^5*a2+105*a1^3*a2^2-105*a1*a2^3+70*a1^4*a3-420*a1^2*a2*a3+210*a2^2*a3+
280*a1*a3^2-210*a1^3*a4+
630*a1*a2*a4-420*a3*a4+504*a1^2*a5-504*a2*a5-840*a1*a6+
720*a7+(-7*a1^6+105*a1^4*a2-315*a1^2*a2^2+105*a2^3-280*a1^3*a3+840*a1*a2*a3-
280*a3^2+630*a1^2*a4-630*a2*a4-
1008*a1*a5+840*a6)*t+(42*a1^5-420*a1^3*a2+630*a1*a2^2+
840*a1^2*a3-840*a2*a3-1260*a1*a4+1008*a5)*t^2+(-210*a1^4+
1260*a1^2*a2-630*a2^2-1680*a1*a3+1260*a4)*t^3+(840*a1^3-
2520*a1*a2+1680*a3)*t^4+(-2520*a1^2+2520*a2)*t^5+5040*a1*t^6-
5040*t^7=0
对于n=8
x1,x2,x3,x4,x5,x6,x7,x8是下列方程的根(关于t)
-1120*a1^3*a2*a3+1680*a1*a2^2*a3+2520*a1^2*a2*a4+
1120*a1^2*a3^2-3360*a1*a3*a4-420*a1^2*a2^3-4032*a1*a2*a5-1120*a2*a3^2+112*a1^5*a3-420*a1^4*a4+
105*a2^4+210*a1^4*a2^2+5760*a1*a7+
2688*a3*a5+3360*a2*a6-1260*a2^2*a4-28*a1^6*a2+1260*a4^2+a1^8+1344*a1^3*a5+(56*a1^6-840*a1^4*a2+
2520*a1^2*a2^2-840*a2^3+2240*a1^3*a3-6720*a1*a2*a3+
2240*a3^2-5040*a1^2*a4+5040*a2*a4+8064*a1*a5-6720*a6)*t^2+
(-6720*a1^3+20160*a1*a2-13440*a3)*t^5+(-8*a1^7+168*a1^5*a2-840*a1^3*a2^2+840*a1*a2^3-560*a1^4*a3+
3360*a1^2*a2*a3-1680*a2^2*a3-2240*a1*a3^2+1680*a1^3*a4-5040*a1*a2*a4+
3360*a3*a4-4032*a1^2*a5+4032*a2*a5+6720*a1*a6-5760*a7)*t+(-336*a1^5+3360*a1^3*a2-5040*a1*a2^2-
6720*a1^2*a3+6720*a2*a3+10080*a1*a4-8064*a5)*t^3+(1680*a1^4-10080*a1^2*a2+5040*a2^2+13440*a1*a3-
10080*a4)*t^4-40320*a1*t^7+(20160*a1^2-20160*a2)*t^6+40320*t^8-5040*a8-3360*a1^2*a6=0
对于n=9
x1,x2,x3,x4,x5,x6,x7,x8,x9是下列方程的根(关于t)
-45360*a1*a8+3360*a1^3*a3^2-756*a1^5*a4+11340*a1*a4^2+3024*a1^4*a5+9072*a2^2*a5-
18144*a4*a5-10080*a1^3*a6-20160*a3*a6+25920*a1^2*a7-25920*a2*a7+378*a1^5*a2^2-1260*a1^3*a2^3+945*a1*a2^4+
168*a1^6*a3-2520*a2^3*a3-36*a1^7*a2+40320*a9+(72*a1^7-1512*a1^5*a2+7560*a1^3*a2^2-7560*a1*a2^3+5040*a1^4*a3-
30240*a1^2*a2*a3+15120*a2^2*a3+20160*a1*a3^2-15120*a1^3*a4+
45360*a1*a2*a4-30240*a3*a4+36288*a1^2*a5-36288*a2*a5-
60480*a1*a6+51840*a7)*t^2+(-181440*a1^2+181440*a2)*t^7+
(60480*a1^3-181440*a1*a2+120960*a3)*t^6+362880*a1*t^8+(-15120*a1^4+90720*a1^2*a2-45360*a2^2-
120960*a1*a3+90720*a4)*t^5+(3024*a1^5-30240*a1^3*a2+45360*a1*a2^2+
60480*a1^2*a3-60480*a2*a3-90720*a1*a4+72576*a5)*t^4+(-504*a1^6+7560*a1^4*a2-22680*a1^2*a2^2+7560*a2^3-
20160*a1^3*a3+60480*a1*a2*a3-20160*a3^2+45360*a1^2*a4-45360*a2*a4-72576*a1*a5+60480*a6)*t^3
+(-9*a1^8+252*a1^6*a2-1890*a1^4*a2^2+3780*a1^2*a2^3-945*a2^4-1008*a1^5*a3+
10080*a1^3*a2*a3-15120*a1*a2^2*a3-10080*a1^2*a3^2+10080*a2*a3^2+3780*a1^4*a4-22680*a1^2*a2*a4+11340*a2^2*a4+
30240*a1*a3*a4-11340*a4^2-12096*a1^3*a5+36288*a1*a2*a5-24192*a3*a5+30240*a1^2*a6-
30240*a2*a6-51840*a1*a7+45360*a8)*t+2240*a3^3+a1^9-2520*a1^4*a2*a3+7560*a1^2*a2^2*a3-362880*t^9-
10080*a1*a2*a3^2+7560*a1^3*a2*a4-11340*a1*a2^2*a4-15120*a1^2*a3*a4+24192*a1*a3*a5-
18144*a1^2*a2*a5+15120*a2*a3*a4+30240*a1*a2*a6=0 数学星空的回答 让我想到了轮换对称多项式有一些恒等式:
http://mathworld.wolfram.com/SymmetricPolynomial.html 再继续追问 由
x1+x2+x3=a1
x1^2+x2^2+x3^2=a2
x1^3+x2^3+x3^3=a3
怎么将 (x-x1)(x-x2)(x-x3)展开的系数用a1,a2,a3表示
即x1+x2+x3=a1
x1x2+x2x3+x1x3
x1x2x3
推广到更高维的次数怎么求?有没有一般的公示, 我觉得这是一道发人深省的好题
公示本来想用Latex编辑,但发现图片显示不全,怎么回事 上面的问题其实和一楼所问的是同一个问题,再问下阶乘函数的展开式的系数怎么求
如 (x-1)(x-2)(x-3)...(x-n)它的乘积展开式的系数是怎样的,有无公式? 越算越复杂 不如直接解方程组:
Solve[x1 + x2 + x3 - d == 0 && x1^2 + x2^2 + x3^2 - e == 0 &&
x1^3 + x2^3 + x3^3 - f == 0, {x1, x2, x3}]
页:
[1]