- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2010-2-28 12:57:29
|
显示全部楼层
利用方程中变量的对称性可以得到对于一般方程(n=3..9)的解:
$x1+x2+x3+...+xn=a1$
$x1^2+x2^2+x3^2+...+xn^2=a2$
$x1^3+x2^3+x3^3+...+xn^3=a3$
.................................................................
$x1^n+x2^n+x3^n+...+xn^n=an$
对于n=3
$x1,x2,x3$是下列方程的根(关于t):
$a1^3-3*a1*a2+2*a3+(-3*a1^2+3*a2)*t+6*a1*t^2-6*t^3=0$
对于n=4
$x1,x2,x3,x4$是下列方程的根(关于t):
$a1^4-6*a1^2*a2+3*a2^2+8*a1*a3-6*a4+(-4*a1^3+12*a1*a2-8*a3)*t+ $
$(12*a1^2-12*a2)*t^2-24*a1*t^3+24*t^4=0$
对于n=5
$x1,x2,x3,x4,x5$是下列方程的根(关于t)
$a1^5-10*a1^3*a2+15*a1*a2^2+20*a1^2*a3-20*a2*a3-30*a1*a4+24*a5+$
$(-5*a1^4+30*a1^2*a2-15*a2^2-40*a1*a3+30*a4)*t+$
$(20*a1^3-60*a1*a2+40*a3)*t^2$
$+(-60*a1^2+60*a2)*t^3+120*a1*t^4-120*t^5=0$
对于n=6
$x1,x2,x3,x4,x5,x6$是下列方程的根(关于t)
$a1^6-15*a1^4*a2+45*a1^2*a2^2-15*a2^3+40*a1^3*a3-120*a1*a2*a3+$
$40*a3^2-90*a1^2*a4+90*a2*a4+144*a1*a5-120*a6+(-6*a1^5+60*a1^3*a2-$
$90*a1*a2^2-120*a1^2*a3+120*a2*a3+180*a1*a4-144*a5)*t+(30*a1^4-180*a1^2*a2+90*a2^2$
$+240*a1*a3-180*a4)*t^2+(-120*a1^3+360*a1*a2-$
$240*a3)*t^3+(360*a1^2-360*a2)*t^4-720*a1*t^5+720*t^6=0$
对于n=7
$x1,x2,x3,x4,x5,x6,x7$是下列方程的根(关于t)
$a1^7-21*a1^5*a2+105*a1^3*a2^2-105*a1*a2^3+70*a1^4*a3-420*a1^2*a2*a3+210*a2^2*a3+$
$280*a1*a3^2-210*a1^3*a4+$
$630*a1*a2*a4-420*a3*a4+504*a1^2*a5-504*a2*a5-840*a1*a6+$
$720*a7+(-7*a1^6+105*a1^4*a2-315*a1^2*a2^2+105*a2^3-280*a1^3*a3+840*a1*a2*a3-$
$280*a3^2+630*a1^2*a4-630*a2*a4-$
$1008*a1*a5+840*a6)*t+(42*a1^5-420*a1^3*a2+630*a1*a2^2+$
$840*a1^2*a3-840*a2*a3-1260*a1*a4+1008*a5)*t^2+(-210*a1^4+$
$1260*a1^2*a2-630*a2^2-1680*a1*a3+1260*a4)*t^3+(840*a1^3-$
$2520*a1*a2+1680*a3)*t^4+(-2520*a1^2+2520*a2)*t^5+5040*a1*t^6-$
$5040*t^7=0$
对于n=8
$x1,x2,x3,x4,x5,x6,x7,x8$是下列方程的根(关于t)
$-1120*a1^3*a2*a3+1680*a1*a2^2*a3+2520*a1^2*a2*a4+$
$1120*a1^2*a3^2-3360*a1*a3*a4-420*a1^2*a2^3-4032*a1*a2*a5-1120*a2*a3^2+112*a1^5*a3-420*a1^4*a4+$
$105*a2^4+210*a1^4*a2^2+5760*a1*a7+$
$2688*a3*a5+3360*a2*a6-1260*a2^2*a4-28*a1^6*a2+1260*a4^2+a1^8+1344*a1^3*a5+(56*a1^6-840*a1^4*a2+$
$2520*a1^2*a2^2-840*a2^3+2240*a1^3*a3-6720*a1*a2*a3+$
$2240*a3^2-5040*a1^2*a4+5040*a2*a4+8064*a1*a5-6720*a6)*t^2+$
$(-6720*a1^3+20160*a1*a2-13440*a3)*t^5+(-8*a1^7+168*a1^5*a2-840*a1^3*a2^2+840*a1*a2^3-560*a1^4*a3+$
$3360*a1^2*a2*a3-1680*a2^2*a3-2240*a1*a3^2+1680*a1^3*a4-5040*a1*a2*a4+$
$3360*a3*a4-4032*a1^2*a5+4032*a2*a5+6720*a1*a6-5760*a7)*t+(-336*a1^5+3360*a1^3*a2-5040*a1*a2^2-$
$6720*a1^2*a3+6720*a2*a3+10080*a1*a4-8064*a5)*t^3+(1680*a1^4-10080*a1^2*a2+5040*a2^2+13440*a1*a3-$
$10080*a4)*t^4-40320*a1*t^7+(20160*a1^2-20160*a2)*t^6+40320*t^8-5040*a8-3360*a1^2*a6=0$
对于n=9
$x1,x2,x3,x4,x5,x6,x7,x8,x9$是下列方程的根(关于t)
$-45360*a1*a8+3360*a1^3*a3^2-756*a1^5*a4+11340*a1*a4^2+3024*a1^4*a5+9072*a2^2*a5-$
$18144*a4*a5-10080*a1^3*a6-20160*a3*a6+25920*a1^2*a7-25920*a2*a7+378*a1^5*a2^2-1260*a1^3*a2^3+945*a1*a2^4+$
$168*a1^6*a3-2520*a2^3*a3-36*a1^7*a2+40320*a9+(72*a1^7-1512*a1^5*a2+7560*a1^3*a2^2-7560*a1*a2^3+5040*a1^4*a3-$
$30240*a1^2*a2*a3+15120*a2^2*a3+20160*a1*a3^2-15120*a1^3*a4+$
$45360*a1*a2*a4-30240*a3*a4+36288*a1^2*a5-36288*a2*a5-$
$60480*a1*a6+51840*a7)*t^2+(-181440*a1^2+181440*a2)*t^7+$
$(60480*a1^3-181440*a1*a2+120960*a3)*t^6+362880*a1*t^8+(-15120*a1^4+90720*a1^2*a2-45360*a2^2-$
$120960*a1*a3+90720*a4)*t^5+(3024*a1^5-30240*a1^3*a2+45360*a1*a2^2+$
$60480*a1^2*a3-60480*a2*a3-90720*a1*a4+72576*a5)*t^4+(-504*a1^6+7560*a1^4*a2-22680*a1^2*a2^2+7560*a2^3-$
$20160*a1^3*a3+60480*a1*a2*a3-20160*a3^2+45360*a1^2*a4-45360*a2*a4-72576*a1*a5+60480*a6)*t^3$
$+(-9*a1^8+252*a1^6*a2-1890*a1^4*a2^2+3780*a1^2*a2^3-945*a2^4-1008*a1^5*a3+$
$10080*a1^3*a2*a3-15120*a1*a2^2*a3-10080*a1^2*a3^2+10080*a2*a3^2+3780*a1^4*a4-22680*a1^2*a2*a4+11340*a2^2*a4+$
$30240*a1*a3*a4-11340*a4^2-12096*a1^3*a5+36288*a1*a2*a5-24192*a3*a5+30240*a1^2*a6-$
$30240*a2*a6-51840*a1*a7+45360*a8)*t+2240*a3^3+a1^9-2520*a1^4*a2*a3+7560*a1^2*a2^2*a3-362880*t^9-$
$10080*a1*a2*a3^2+7560*a1^3*a2*a4-11340*a1*a2^2*a4-15120*a1^2*a3*a4+24192*a1*a3*a5-$
$18144*a1^2*a2*a5+15120*a2*a3*a4+30240*a1*a2*a6=0$ |
评分
-
查看全部评分
|