a=A/2,b=B/2,c=(A+B)/2
sinAsin(B+A/2)=sinBsin(A+B/2)
sinacosasin(c+b)=sinbcosbsin(c+a)
sina/sinb=(sin(c+a)cos(c-a))/(sin(c+b)cos(c-b))
sina/sinb=(sin2c+sin2a)/(sin2c+sin2b)
设a>b
则
(sin2a)/(sin2b)>1
(sin2c+sin2a)/(sin2c+sin2b)<(sin2a)/(sin2b)
(sinacosa)/(sinbcosb)<sina/sinb
(sin2a)/(sin2b)<sina/sinb 直接展开,证明A/2=B/2
页:
1
[2]