如果给定了步数N,倒是有嚼头的。 我倒感兴趣的是 2维 随机游走在一个象限的分布。
============
假如粒子在二维格点图中 随机游走是有偏向的,要么是向右,要么是向上,概率均为1/2,问粒子到达(m,n) 点的概率是多少?
假如粒子在第一象限随机游走,步长L在【0,1】内均匀分布,偏角a 在【0,pi/2】内均匀分布,问随机游走了N步,粒子到达平面内一点(x,y)的概率是多少?
============ 我知道怎么做了
盼wayne大神给出程序。 我曾经考虑过一个类似地问题:任给一个正多边形,把一只青蛙放在其中一个顶点,它每次只能跳到相邻的顶点,问经过k次时才跳回原点的概率。 14# creasson
额,大神岂是我辈这种程序猿。
参考如下:s = x^-1/4 + x/4 + y^-1/4 + y/4; t = s^2;
Table = Coefficient; s = s - p (x^2 y^-1 + x y^2); p, {i, 15}]N], 20]要是能弄出个递归的,效率就更好了 16# wayne
程序有点小问题,修改了下,然后计算了前50项:
{3/64, 19/512, 463/16384, 2871/131072, 18237/1048576, \
474127/33554432, 12579775/1073741824, 84932497/8589934592, \
291131315/34359738368, 4044935241/549755813888, \
113697405167/17592186044416, 403499389461/70368744177664, \
23112976379509/4503599627370496, 667084464244139/144115188075855872, \
19384686160409463/4611686018427387904, \
141676779326513557/36893488147419103232, \
260266076904529275/73786976294838206464, \
3843460951374842527/1180591620717411303424, \
228020477551392126867/75557863725914323419136, \
1697618682081551633469/604462909807314587353088, \
12683914214694714665881/4835703278458516698824704, \
760615383727198123949269/309485009821345068724781056, \
11436792910542675966597207/4951760157141521099596496896, \
86217169256459111515755093/39614081257132168796771975168, \
1303163436578289219550753031/633825300114114700748351602688, \
9871325424399480456378203529/5070602400912917605986812821504, \
18733478593595590099853427697/10141204801825835211973625643008, \
4559639555657828634026463122999/2596148429267413814265248164610048, \
138979709103261670341818645063265/83076749736557242056487941267521536,\
4243426450541638758628828643777067/\
2658455991569831745807614120560689152, \
129770863272688704780777509970575271/\
85070591730234615865843651857942052864, \
993638449390014228926843836072423117/\
680564733841876926926749214863536422912, \
1904713927808517827090183662824994455/\
1361129467683753853853498429727072845824, \
14623939011406589180358768463243911075/\
10889035741470030830827987437816582766592, \
1798698940164678393091096090002272567475/\
1393796574908163946345982392040522594123776, \
13843351100770709218185143465467891941493/\
11150372599265311570767859136324180752990208, \
213321314283444938377043636223634246252811/\
178405961588244985132285746181186892047843328, \
6581296212573418407069797620803562606819881/\
5708990770823839524233143877797980545530986496, \
101622236725635467209781378682870833546818031/\
91343852333181432387730302044767688728495783936, \
785315127963828005486834920851642647062995553/\
730750818665451459101842416358141509827966271488, \
12148327852778406065455149583086983192177213343/\
11692013098647223345629478661730264157247460343808, \
94043180413524392096166175400262369970898451547/\
93536104789177786765035829293842113257979682750464, \
1457198287185729404460447426479731004244557921431/\
1496577676626844588240573268701473812127674924007424, \
22596649955403403623643092035130575479186288664243/\
23945242826029513411849172299223580994042798784118784, \
175330781771147308104430354122106951085931076281085/\
191561942608236107294793378393788647952342390272950272, \
21781943481270168103637828022651726906691276785161479/\
24519928653854221733733552434404946937899825954937634816, \
338482374644556772192318681106700599677109110994616055/\
392318858461667547739736838950479151006397215279002157056, \
2631624447519693637818940898857667778526984164839516433/\
3138550867693340381917894711603833208051177722232017256448, \
40945711122596677866288823581941087439329298906727875583/\
50216813883093446110686315385661331328818843555712276103168, \
318726774641652409434901478857113984916059934340954171533/\
401734511064747568885490523085290650630550748445698208825344}
N], 20]=0.28802767805420680370 问题在哪,请赐教
页:
1
[2]