找回密码
 欢迎注册
楼主: KeyTo9_Fans

[原创] 随机游走掉进陷阱的概率

[复制链接]
发表于 2011-12-25 08:58:36 | 显示全部楼层
根据mathe的链接,我们可以知道,在格点中随机游走到达任何一个格点的概率 随 步数趋向于无穷大而趋向于 1 如果给定了步数N,倒是有嚼头的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-12-25 09:19:45 | 显示全部楼层
我倒感兴趣的是 2维 随机游走在一个象限的分布。 ============ 假如粒子在二维格点图中 随机游走是有偏向的,要么是向右,要么是向上,概率均为1/2,问粒子到达(m,n) 点的概率是多少? 假如粒子在第一象限随机游走,步长L在【0,1】内均匀分布,偏角a 在【0,pi/2】内均匀分布,问随机游走了N步,粒子到达平面内一点(x,y)的概率是多少? ============
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-12-25 09:25:03 | 显示全部楼层
我知道怎么做了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-4 10:18:22 | 显示全部楼层
cccccccccccccc.gif 盼wayne大神给出程序。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-4 10:45:52 | 显示全部楼层
我曾经考虑过一个类似地问题:任给一个正多边形,把一只青蛙放在其中一个顶点,它每次只能跳到相邻的顶点,问经过k次时才跳回原点的概率。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-5 18:29:12 | 显示全部楼层
14# creasson 额,大神岂是我辈这种程序猿。 参考如下:
  1. s = x^-1/4 + x/4 + y^-1/4 + y/4; t = s^2;
  2. Table[s = s*t; p[i] = Coefficient[s, x y^2]; s = s - p[i] (x^2 y^-1 + x y^2); p[i], {i, 15}]
复制代码
  1. N[Total[p /@ Range[15]], 20]
复制代码
要是能弄出个递归的,效率就更好了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-5 19:24:35 | 显示全部楼层
16# wayne 程序有点小问题,修改了下,然后计算了前50项: {3/64, 19/512, 463/16384, 2871/131072, 18237/1048576, \ 474127/33554432, 12579775/1073741824, 84932497/8589934592, \ 291131315/34359738368, 4044935241/549755813888, \ 113697405167/17592186044416, 403499389461/70368744177664, \ 23112976379509/4503599627370496, 667084464244139/144115188075855872, \ 19384686160409463/4611686018427387904, \ 141676779326513557/36893488147419103232, \ 260266076904529275/73786976294838206464, \ 3843460951374842527/1180591620717411303424, \ 228020477551392126867/75557863725914323419136, \ 1697618682081551633469/604462909807314587353088, \ 12683914214694714665881/4835703278458516698824704, \ 760615383727198123949269/309485009821345068724781056, \ 11436792910542675966597207/4951760157141521099596496896, \ 86217169256459111515755093/39614081257132168796771975168, \ 1303163436578289219550753031/633825300114114700748351602688, \ 9871325424399480456378203529/5070602400912917605986812821504, \ 18733478593595590099853427697/10141204801825835211973625643008, \ 4559639555657828634026463122999/2596148429267413814265248164610048, \ 138979709103261670341818645063265/83076749736557242056487941267521536,\ 4243426450541638758628828643777067/\ 2658455991569831745807614120560689152, \ 129770863272688704780777509970575271/\ 85070591730234615865843651857942052864, \ 993638449390014228926843836072423117/\ 680564733841876926926749214863536422912, \ 1904713927808517827090183662824994455/\ 1361129467683753853853498429727072845824, \ 14623939011406589180358768463243911075/\ 10889035741470030830827987437816582766592, \ 1798698940164678393091096090002272567475/\ 1393796574908163946345982392040522594123776, \ 13843351100770709218185143465467891941493/\ 11150372599265311570767859136324180752990208, \ 213321314283444938377043636223634246252811/\ 178405961588244985132285746181186892047843328, \ 6581296212573418407069797620803562606819881/\ 5708990770823839524233143877797980545530986496, \ 101622236725635467209781378682870833546818031/\ 91343852333181432387730302044767688728495783936, \ 785315127963828005486834920851642647062995553/\ 730750818665451459101842416358141509827966271488, \ 12148327852778406065455149583086983192177213343/\ 11692013098647223345629478661730264157247460343808, \ 94043180413524392096166175400262369970898451547/\ 93536104789177786765035829293842113257979682750464, \ 1457198287185729404460447426479731004244557921431/\ 1496577676626844588240573268701473812127674924007424, \ 22596649955403403623643092035130575479186288664243/\ 23945242826029513411849172299223580994042798784118784, \ 175330781771147308104430354122106951085931076281085/\ 191561942608236107294793378393788647952342390272950272, \ 21781943481270168103637828022651726906691276785161479/\ 24519928653854221733733552434404946937899825954937634816, \ 338482374644556772192318681106700599677109110994616055/\ 392318858461667547739736838950479151006397215279002157056, \ 2631624447519693637818940898857667778526984164839516433/\ 3138550867693340381917894711603833208051177722232017256448, \ 40945711122596677866288823581941087439329298906727875583/\ 50216813883093446110686315385661331328818843555712276103168, \ 318726774641652409434901478857113984916059934340954171533/\ 401734511064747568885490523085290650630550748445698208825344} N[Total[p /@ Range[50]], 20]=0.28802767805420680370
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-5-5 23:23:11 | 显示全部楼层
问题在哪,请赐教
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 03:16 , Processed in 0.032032 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表