mathematica 发表于 2012-8-30 08:43:04

10# ysr


很有用???????能有什么用???????

云梦 发表于 2012-8-30 11:19:48

我用计算器可以解2次,三次,四次方程。

云梦 发表于 2012-8-30 13:57:36

该方程有一个实数根和一对共轭虚根。
X1=101236968737566450829.56350832742494640729348066998637443231385452640956597353836943537463015606576172907868236386682112271129742509090806172284572821384598353979532528966298568729801741643753831420526758403907137253742748988896745586495803612924461213754290586095078797465884997374221002357192031890091409354153380542065670580934576657511367955834305214954656059319001158478112488180975632461668712258638864296672809537230125037657306645981160283168468923745508119730143073575082416653930977814420830054031771101……

x2= 0.78175416371247320364674033499318721615692726320478298676918471768731507803288086453934118193341056135564871254545403086142286410692299176989766264483149284364900870821876915710263379201953568626871374494448372793247901806462230606877145293047539398732942498687110501178596015945045704677076690271032835290467288328755683977917152607477328029659500579239056244090487816230834356129319432148336404768615062518828653322990580141584234461872754059865071536787541208326965488907210415027015885550820823152635905263438 ±215940.25581873044101646830509673259820474627160022829720500839167816093319335864505173279398903323601937213397908075648754011616870592168471469794277114010051000339513993148954450638578210071518831396070605879295413391044478244252115191250906250256710897017144144919680931911873922507235771561657470938653706091994540125687134944243321829842912403465230718116432803397360805258196544629833685855077967810460603404436789946165909842539709731150816515809350868140607473924654462469345128308324960808767163151110447 i

mathematica 发表于 2012-8-30 13:58:47

12# 云梦


即使一万次的方程,我也能解决!!!!!!!!!!!

mathematica 发表于 2012-8-30 13:59:29

13# 云梦


这个方程本来就有精确解,但是没什么求解的价值!

云梦 发表于 2012-8-30 14:00:35

一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
  重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,
  总判别式:Δ=B^2-4AC。
  当A=B=0时,盛金公式①:
  X1=X2=X3=-b/(3a)=-c/b=-3d/c。
  当Δ=B^2-4AC>0时,盛金公式②:
  X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);
  X2,X3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))i/(6a),
  其中Y1,Y2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。
  当Δ=B^2-4AC=0时,盛金公式③:
  X1=-b/a+K;X2=X3=-K/2,
  其中K=B/A,(A≠0)。
  当Δ=B^2-4AC<0时,盛金公式④:
  X1=(-b-2A^(1/2)cos(θ/3))/(3a);
  X2,X3=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),
  其中θ=arccosT,T= (2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。

mathematica 发表于 2012-8-30 14:06:09

求解这类方程,其实并没有什么价值!

云梦 发表于 2012-8-30 14:09:21

用Wolfram Mathematica 解法:
a = -2
b = -202473937475132901656
c = 316569687235627831309
d = -9441399001350288578129845169338
N, 512]

mathematica 发表于 2012-8-30 15:06:30

18# 云梦


就应该用mathematica求解的!!!!!!!!!!!!

ysr 发表于 2012-8-31 20:08:29

页: 1 [2] 3 4
查看完整版本: 求解方程