找回密码
 欢迎注册
楼主: ysr

[求助] 求解方程

[复制链接]
发表于 2012-8-30 08:43:04 | 显示全部楼层
10# ysr 很有用???????能有什么用???????
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 11:19:48 | 显示全部楼层
我用计算器可以解2次,三次,四次方程。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 13:57:36 | 显示全部楼层
该方程有一个实数根和一对共轭虚根。 X1=101236968737566450829.56350832742494640729348066998637443231385452640956597353836943537463015606576172907868236386682112271129742509090806172284572821384598353979532528966298568729801741643753831420526758403907137253742748988896745586495803612924461213754290586095078797465884997374221002357192031890091409354153380542065670580934576657511367955834305214954656059319001158478112488180975632461668712258638864296672809537230125037657306645981160283168468923745508119730143073575082416653930977814420830054031771101…… x2= 0.78175416371247320364674033499318721615692726320478298676918471768731507803288086453934118193341056135564871254545403086142286410692299176989766264483149284364900870821876915710263379201953568626871374494448372793247901806462230606877145293047539398732942498687110501178596015945045704677076690271032835290467288328755683977917152607477328029659500579239056244090487816230834356129319432148336404768615062518828653322990580141584234461872754059865071536787541208326965488907210415027015885550820823152635905263438 ±215940.25581873044101646830509673259820474627160022829720500839167816093319335864505173279398903323601937213397908075648754011616870592168471469794277114010051000339513993148954450638578210071518831396070605879295413391044478244252115191250906250256710897017144144919680931911873922507235771561657470938653706091994540125687134944243321829842912403465230718116432803397360805258196544629833685855077967810460603404436789946165909842539709731150816515809350868140607473924654462469345128308324960808767163151110447 i
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 13:58:47 | 显示全部楼层
12# 云梦 即使一万次的方程,我也能解决!!!!!!!!!!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 13:59:29 | 显示全部楼层
13# 云梦 这个方程本来就有精确解,但是没什么求解的价值!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 14:00:35 | 显示全部楼层
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。   重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,   总判别式:Δ=B^2-4AC。   当A=B=0时,盛金公式①:   X1=X2=X3=-b/(3a)=-c/b=-3d/c。   当Δ=B^2-4AC>0时,盛金公式②:   X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);   X2,X3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))i/(6a),   其中Y1,Y2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。   当Δ=B^2-4AC=0时,盛金公式③:   X1=-b/a+K;X2=X3=-K/2,   其中K=B/A,(A≠0)。   当Δ=B^2-4AC<0时,盛金公式④:   X1=(-b-2A^(1/2)cos(θ/3))/(3a);   X2,X3=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),   其中θ=arccosT,T= (2Ab-3aB)/(2A^(3/2)),(A>0,-1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 14:06:09 | 显示全部楼层
求解这类方程,其实并没有什么价值!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 14:09:21 | 显示全部楼层
用Wolfram Mathematica 解法: a = -2 b = -202473937475132901656 c = 316569687235627831309 d = -9441399001350288578129845169338 N[Solve[a*q^3 + b*q^2 + c*q + d == 0, q], 512]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-8-30 15:06:30 | 显示全部楼层
18# 云梦 就应该用mathematica求解的!!!!!!!!!!!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-8-31 20:08:29 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 16:46 , Processed in 0.026772 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表