解丢番图方程x^2+y^2+z^2=3xyz
求正整数解:x^2+y^2+z^2=3xyz
===============
更进一步,假如 0<x<=y<=z<=10^10,那么总共有多少组呢 1,1,1
1,1,2
1,2,5
1,5,13
1,13,34
1,34,89
1,89,233
1,233,610 (2,5,29),(2,29,169),(2,169,985),(5,13,194),(5,29,433) 貌似x=1的挺有规律的呢。
x=2的能否多算几组... (2,169,985) [(2,985,5741)] (2,5741,33461) 1,2的规律是一样的1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025http://oeis.org/A0015191, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849http://oeis.org/A001653 5有多个线。。。
1 5 13 194 2897 43261 646018
2 5 29 433 6466 96557 假设$x<=y<=z$
貌似$x$ 只能是$1$,$2$,$5$