王守恩
发表于 5 天前
11(行)×4(列)方格。第1行填1,2,3,4,5,6,7,8,9,10,11。第2行填1,1,2,3,4,5,6,7,8,9,10。第3行填1,1,1,2,3,4,5,6,7,8,9。
每列3个数的积填在第4行。若第4行11个数的和是最小时,则这11个数有唯一答案。——唯一答案——这个可能最大。
northwolves
发表于 5 天前
本帖最后由 northwolves 于 2025-9-26 22:17 编辑
王守恩 发表于 2025-9-26 07:21
9(行)×4(列)方格。第1行填1,2,3,4,5,6,7,8,9。第2行填1,1,2,3,4,5,67,8。第3行填1,1,1,2,3,4,5,6,7。
每 ...
w(7)=313
{{1,1,1,2,3,4,5,6,7},{6,7,8,2,4,1,1,3,5},{6,5,4,8,3,9,7,2,1},313}
{{1,1,1,2,3,4,5,6,7},{6,7,8,2,4,1,1,3,5},{6,5,4,9,3,8,7,2,1},313}
{36, 35, 32, 32, 36, 36, 35, 36, 35}
{36, 35, 32, 32, 36, 36, 35, 36, 35}
313
northwolves
发表于 5 天前
w(9)=683
a={1,1,1,2,3,4,5,6,7,8,9};
b={10,9,8,6,2,5,3,1,1,4,7};
c={6,7,8,5,11,3,4,10,9,2,1};
{60,63,64,60,66,60,60,60,63,64,63}
683
王守恩
发表于 4 天前
差不多还是这串数——Table], {n, 2, 20}]——三重内积的最小值—— 6# 。谢谢 mathe!!!
{3, 7, 17, 36, 68, 121, 199, 313, 471, 683, 961, 1318, 1767, 2324, 3005, 3826, 4807, 5967, 7327}
northwolves
发表于 4 天前
王守恩 发表于 2025-9-27 04:39
差不多还是这串数——Table], {n, 2, 20}]——三重内积的 ...
按Stirling公式,$a(n) \approx n^4 \left(\frac{\left(\frac{2 \pi }{n-1}\right)^{\frac{1}{2 n}}}{e}\right)^3$
{4, 8, 17, 36, 69, 121, 200, 314, 472, 685, 963, 1320, 1770, 2327, 3008, 3830, 4811, 5971, 7332}
northwolves
发表于 4 天前
w(8)=472?
a={1,1,1,2,3, 4,5,6,7,8};b={5,8,7,6,2,4,9,1,3,1};c={10,6,7,4,9,3,1,8,2,5}; {50,48,49,48,54,48,45,48,42,40}, 472
w(10)=963?
a={1,1,1,2,3, 4,5,6,7,8,9,10};b={10,9,8,6,5,7,3,1,11,1,2,4};c={8,9,10,7,6,3,5,12,1,11,4,2};{80,81,80,84,90,84,75,72,77,88,72,80},963
w(11)=1319?
a={1,1,1,2,3,4,5,6,7,8,9,10,11};b={8,9,10,7,12,6,4,3,2,1,11,5,1};c={13,11,10,8,3,4,5,6,7,12,1,2,9};{104,99,100,112,108,96,100,108,98,96,99,100,99},1319
王守恩
发表于 4 天前
northwolves 发表于 2025-9-27 09:18
w(8)=472?
a={1,1,1,2,3, 4,5,6,7,8};b={5,8,7,6,2,4,9,1,3,1};c={10,6,7,4,9,3,1,8,2,5}; {50,48,49,48,5 ...
n = 10; a = {5, 7, 8, 2, 3, 1, 4, 1, 6, 1}; b = Join[{1}, Range]; Print])]]
471。
n = 12; a = {7, 8, 10, 3, 4, 5, 2, 6, 1, 9, 1, 1}; b = Join[{1}, Range]; Print])]]
962。——后面的还是来不了。——规律不好找。
王守恩
发表于 3 天前
northwolves 发表于 2025-9-27 08:52
按Stirling公式,$a(n) \approx n^4 \left(\frac{\left(\frac{2 \pi }{n-1}\right)^{\frac{1}{2 n}}}{e}\ ...
{4, 8, 17, 36, 69, 121, 200, 314, 472, 685, 963, 1320, 1770, 2327, 3008, 3830, 4811, 5971, 7332}——有道理。
n = 17; a = {13, 14, 10, 7, 6, 11, 8, 4, 5, 9, 12, 3, 2, 1, 15, 1, 1}; b = Join[{1}, Range]; Print])]]
3832——大海捞针!——还有更小的吗?!
u = \; g = {}; Table;
If, b = Join[{1}, Range]; t = Total])];
If], {A, 3, 10}, {B, 3,10}, {C, 3, 10}, {D, 3, 10}, {E, 3, 10}, {F, 3, 10}, {G, 3, 10}, {H, 3, 10}];
Print["最小结果: A=", g[], ", B=", g[], ", C=", g[], ", D=", g[], ", E=", g[], ", F=", g[], ", G=", g[], ", H=", g[], " \ ", u]
最小结果: A=10, B=7, C=5, D=6, E=8, F=4, G=9, H=3 \ 3832——不懂半懂的学了一点——比大海捞针好一点。
王守恩
发表于 3 天前
试试!走自己的路。
n(行)×4(列)方格。第1行填 1,2,3,...,n。第2行填1,1,2,3,...,n-1。第3行填1,1,1,..,(n-2)个1,2,3。
每列3个数的积填在第4行。则第4行n个数的和是最小时, 得到这样一串数: 2, 7, 13, 22, 36, 55, 80, 112, 152, 201, 260, 330, 412, 507, 616, 740, 880,
王守恩
发表于 昨天 07:10
试试!走自己的路。
Table, n/2, Floor]; a = Join, Range];
B = If, n/2, Ceiling]; b = Join, Range];
k = MinimalBy], Total*Range] &] // First;
m = Total*Range];
Print["n=", n, ": a=", a, " b=", k, " 和=", m], {n, 1, 16}];
n=1: a={2} b={1} 和=2
n=2: a={1,2} b={1,2} 和=6
n=3: a={1,2,3} b={1,1,2} 和=13
n=4: a={1,1,2,3} b={1,2,3,1} 和=22
n=5: a={1,1,2,3,4} b={1,2,1,3,1} 和=36
n=6: a={1,1,1,2,3,4} b={1,2,3,1,4,1} 和=53
n=7: a={1,1,1,2,3,4,5} b={1,2,3,1,4,1,1} 和=75
n=8: a={1,1,1,1,2,3,4,5} b={1,2,3,4,1,5,1,1} 和=102
n=9: a={1,1,1,1,2,3,4,5,6} b={1,2,3,4,1,1,5,1,1} 和=135
n=10: a={1,1,1,1,1,2,3,4,5,6} b={1,2,3,4,6,1,1,5,1,1} 和=173
n=11: a={1,1,1,1,1,2,3,4,5,6,7} b={1,2,3,4,5,1,1,6,1,1,1} 和=219
n=12: a={1,1,1,1,1,1,2,3,4,5,6,7} b={1,2,3,4,5,7,1,1,1,6,1,1} 和=271
n=13: a={1,1,1,1,1,1,2,3,4,5,6,7,8} b={1,2,3,4,5,7,1,1,1,6,1,1,1} 和=331
n=14: a={1,1,1,1,1,1,1,2,3,4,5,6,7,8} b={1,2,3,4,5,6,8,1,1,1,7,1,1,1} 和=399
n=15: a={1,1,1,1,1,1,1,2,3,4,5,6,7,8,9} b={1,2,3,4,5,6,8,1,1,1,1,7,1,1,1} 和=476
SystemException["MemoryAllocationFailure"]——说来不了了。