northwolves 发表于 2014-9-10 21:40:52

四边形的面积

任意四边形,边长a,b,c,d,四边形的最大面积有没有简单的公式?

是否圆内接四边形面积最大?

kastin 发表于 2014-9-10 22:45:42

http://www.docin.com/p-507311667.html,结论是圆内接四边形面积最大。

BeerRabbit 发表于 2014-9-11 09:15:54

似乎可以用肥皂沫膜实验进行考虑:四个边的张力垂直于对应边向外,力的大小正比于该边边长。

gxqcn 发表于 2014-9-11 09:53:25

边长依次为 \(a,\ b,\ c,\ d\) 的凸四边形,其面积为 \
其中 \(p=\frac12 (a+b+c+d)\);\(\alpha=\frac12(\angle A + \angle C)\text{ or }\alpha=\frac12(\angle B + \angle D)\)
注意到 \(\angle B + \angle D = 2\pi - (\angle A + \angle C)\),故无论取那组内对角,并不会影响到 \(\cos^2\alpha\) 的计算结果。

显然,当 \(\cos^2\alpha = 0\) 时,即 \(\angle A + \angle C = \angle B + \angle D = \pi\) 时,面积可取到最大值,此时四边形内接于圆。

wayne 发表于 2014-9-11 10:03:33

抛砖引玉:

不妨设边长顺次为 $a,b,c,d$,,其他类型只需对结果做符号的轮换即可。
继续 设边$a,b$的夹角为$\alpha$,边 $c,d$的夹角为 $\beta$ ,
则根据对角线的两种计算方式得到:
\
则目标式子 \

变换一下就是\[(\frac{a^2+b^2-c^2-d^2}{2})^2 +4S^2 = (a^2b^2+c^2d^2) - 2 abcd \cos(\alpha+\beta)\]
继续变换,使式子尽可能的对称,就是:

\[\frac{1}{2} (a^2 b^2+a^2 c^2+a^2 d^2+b^2 c^2+b^2 d^2+c^2 d^2)-\frac{1}{4} (a^4+b^4+c^4+d^4) = 4S^2 + 2 abcd \cos(\alpha+\beta)\]

发现 上式两端均是关于$a,b,c,d$的轮换对称,所以面积$S$与对角线的选择无关。

要使$S$尽可能的大,我们只需找出 其中一对相对的两个顶角之和 尽可能的接近 $\pi$ 就行了。
而四边形的内角和为$2\pi$,其中一对顶角和为$\pi$,意味着另一对也是 $\pi$

cn8888 发表于 2014-9-11 14:46:49

婆罗摩笈多公式
http://zh.wikipedia.org/wiki/%E5%A9%86%E7%BE%85%E6%91%A9%E7%AC%88%E5%A4%9A%E5%85%AC%E5%BC%8F
Brahmagupta's Formula
http://mathworld.wolfram.com/BrahmaguptasFormula.html

倪举鹏 发表于 2014-9-11 17:30:34

算得a,b边的夹角是arctan(((a+b+c-d)*(a+b-c+d)*(a-b+c+d)*(-a+b+c+d))^(1/2)/(a^2+b^2-c^2-d^2))

倪举鹏 发表于 2014-9-11 19:53:04

看出方程解的眉目了,有几何关系的,问题好像被彻底解决。算得a,b边的夹角是arctan(((-a-b+c-d)*(a-b+c-d)*(a-b-c+d)*(a+b+c+d))^(1/2)/(a^2+b^2-c^2-d^2))有最小面积,这个时候,a,b边的夹角与c,d边夹角相等,且如果将a,b边的对角沿a,b边对应的对角线对称过来,4点共圆
a,b边的夹角是arctan(((a+b+c-d)*(a+b-c+d)*(a-b+c+d)*(-a+b+c+d))^(1/2)/(a^2+b^2-c^2-d^2))这个时候,a,b边的夹角与c,d边夹角相等,且如果将a,b边的对角沿a,b边对应的对角线对称过来,4点共圆

倪举鹏 发表于 2014-9-11 22:08:11

感觉多边形也是内接于圆有最大面积……

hujunhua 发表于 2014-9-12 09:14:25

给定边长的诸 n 边形中以内接于圆者面积最大,可以这样理解:

给定边长的诸多形边中,必定存在一个内接于圆者, 它和它的面积都记为A, 外接圆及其面积都记为 C。(以下相类)
把外接圆 C 与多边形之间的 n 个弓形固定在多边形的边上,随着多边形一起移变。这些弓形的总面积记为 B。
当A移变成非内接于圆的其它多边形 A* 时,固定在边上的各圆弧段缀成了一个非圆封闭曲线C*。
C*=A*+B
C=A+B
由等周定理知 C*≤C, 故 A*≤A, 即内接于圆者面积最大。巧妙的推广及论证

这是斯坦纳用过的方法。
页: [1] 2 3
查看完整版本: 四边形的面积