几道证明题
[*]\(a_n>0\)且\(\displaystyle \lim_{n\to \infty} \sum_{k=1}^n a_k a_n^2 =\frac{3}{2}\),证明:\(\displaystyle \lim_{n\to \infty} a_n \sqrt{n}=1\)
[*]函数\(f(x)\)在整个数轴上连续并且\(f(x)>0\),已知对任意的\(t\),\(\displaystyle \int_{-\infty}^{\infty} e^{-|t-x|} f(x) \dif x <1\)
证明:对任意的\(a,b\)有,\(\displaystyle \int_a^b f(x) \dif x \le \frac{b-a}{2}+1\)
[*]证明\(\displaystyle \sum_{n=2}^{\infty} \frac{\cos(\ln\ln n)}{\ln n}\)发散
页:
[1]