素数粉 发表于 2008-11-10 23:11:46

素数的百分比问题

10^23内有约1.9253%的素数,如要达到1%以下比例应该是
10^50以内能达到吗?

liangbch 发表于 2008-11-11 09:21:09

你不会不知道素数定理吧?
我们定义n以内素数的个数为x, 则素数的密度 $pi(n)= x/n$,当n很大的时候,精确的求$pi(n )$很难,
但是有有一个很好的逼近公式
$n->oo, \lim pi(n)->\frac{n}{log(n)}$, 更详细的信息见http://baike.baidu.com/view/815128.htm

by the way, 我的这个素数定理的公式不是很地道,谁能给出更标准的公式?

无心人 发表于 2008-11-11 12:46:48

足够了
太复杂的计算起来麻烦

2.6e+43
差不多逼近0.01

tprime 发表于 2008-11-11 13:34:45

发到你邮箱了, 站内的消息尝试几次发给你都失败了
莫非被管理员bs?
gxqcn: 非也。可能是发信者或收信者信箱已满需要清空;又或是添错了收信人ID号

我也忘了从哪里抄来下面两个估算公式
n (log n + log log n - 1.0073) < p(n) < n (log n + log log n - 0.9385)
(x/log x)(1 + 0.992/log x) < pi(x) <(x/log x)(1 + 1.2762/log x)
(居然回复错了贴子主题)

xiugakei 发表于 2008-12-22 12:05:09

p(x)约=x/(lnx-1)
所以要要达到1%以下比例,就是lnx-1>100
所以x>e的101次方就可以了。

仙剑魔 发表于 2008-12-22 12:13:56

貌似是
∫(1/ln(x))dx
不断用分步积分能得到近似值......

gxqcn 发表于 2008-12-22 12:34:35

原帖由 xiugakei 于 2008-12-22 12:05 发表 http://bbs.emath.ac.cn/images/common/back.gif
p(x)约=x/(lnx-1)
所以要要达到1%以下比例,就是lnx-1>100
所以x>e的101次方就可以了。

这个似乎毫无根据,结论也是错的。

用素数定理即可,见 2#

xiugakei 发表于 2008-12-23 00:38:06

晕,素数定理不止一个,p(x)约=x/(lnx-1)和p(x)约=x/lnx是其中两个最常见的,还有p(x)约=x/(lnx-1.08..)的,等等
结论是正确的

gxqcn 发表于 2008-12-23 09:20:26

估计楼上说的仅是在局部小范围内依统计规律而进行修正过的“素数定理”,可能无法推广到任意大(足够大)的范围。
页: [1]
查看完整版本: 素数的百分比问题