gxqcn 发表于 2016-7-14 07:58:07

最受数学家喜爱的无字证明

1989 年的《美国数学月刊》(American Mathematical Monthly)上有一个貌似非常困难的数学问题:下图是由一个个小三角形组成的正六边形棋盘,现在请你用右边的三种(仅朝向不同的)菱形把整个棋盘全部摆满(图中只摆了其中一部分),证明当你摆满整个棋盘后,你所使用的每种菱形数量一定相同。

《美国数学月刊》提供了一个非常帅的“证明”。把每种菱形涂上一种颜色,整个图形瞬间有了立体感,看上去就成了一个个立方体在墙角堆叠起来的样子。三种菱形分别是从左侧、右侧、上方观察整个立体图形能够看到的面,它们的数目显然应该相等。

它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。死理性派曾经讨论过 这个问题 。同时它还是死理性派logo的出处。

严格地说,这个本来不算数学证明的。但它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。因此,这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。《最迷人的数学趣题——一位数学名家精彩的趣题珍集》(Mathematical Puzzles: A Connoisseur's Collection)一书的封皮上就赫然印着这个经典图形。在数学中,类似的流氓证明数不胜数,不过上面这个可能算是最经典的了。

《最迷人的数学趣题——一位数学名家精彩的趣题珍集》的封面

kastin 发表于 2016-7-15 23:10:21

之前也见到过不少用空间几何图中的几何关系来透视成平面图形,从而“证明”了平面内的几何关系。好像也有利用射影几何的来证明的。这些都可看成某种仿射变换前后的图形,保持某种内在的不变性。

克莱因说过,几何就是一种运动群,而研究几何其本质在于研究其中的不变量,即几何变换前后,其中保持不变的量(比如亏格,欧拉示性数等),或者几何元素之间的关系。
页: [1]
查看完整版本: 最受数学家喜爱的无字证明