数学研发论坛

 找回密码
 欢迎注册
查看: 1695|回复: 10

[分享] 最受数学家喜爱的无字证明

[复制链接]
发表于 2016-7-14 07:58:07 | 显示全部楼层 |阅读模式
1989 年的《美国数学月刊》(American Mathematical Monthly)上有一个貌似非常困难的数学问题:下图是由一个个小三角形组成的正六边形棋盘,现在请你用右边的三种(仅朝向不同的)菱形把整个棋盘全部摆满(图中只摆了其中一部分),证明当你摆满整个棋盘后,你所使用的每种菱形数量一定相同。

《美国数学月刊》提供了一个非常帅的“证明”。把每种菱形涂上一种颜色,整个图形瞬间有了立体感,看上去就成了一个个立方体在墙角堆叠起来的样子。三种菱形分别是从左侧、右侧、上方观察整个立体图形能够看到的面,它们的数目显然应该相等。

它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。死理性派曾经讨论过 这个问题 。同时它还是死理性派logo的出处。

严格地说,这个本来不算数学证明的。但它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。因此,这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。《最迷人的数学趣题——一位数学名家精彩的趣题珍集》(Mathematical Puzzles: A Connoisseur's Collection)一书的封皮上就赫然印着这个经典图形。在数学中,类似的流氓证明数不胜数,不过上面这个可能算是最经典的了。

《最迷人的数学趣题——一位数学名家精彩的趣题珍集》的封面

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-15 23:10:21 | 显示全部楼层
之前也见到过不少用空间几何图中的几何关系来透视成平面图形,从而“证明”了平面内的几何关系。好像也有利用射影几何的来证明的。这些都可看成某种仿射变换前后的图形,保持某种内在的不变性。

克莱因说过,几何就是一种运动群,而研究几何其本质在于研究其中的不变量,即几何变换前后,其中保持不变的量(比如亏格,欧拉示性数等),或者几何元素之间的关系。

点评

勾股定理也能用无字证明。  发表于 2016-7-17 22:50
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 20:52:16 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 22:23:56 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 22:27:25 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 22:47:31 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 22:52:42 | 显示全部楼层

点评

这本书才92页居然卖500多块,亚马逊真是啥都有啊!  发表于 2016-7-19 17:01
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 23:01:26 | 显示全部楼层
dandelin的椭圆
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-7-17 23:04:20 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-8-24 06:10 , Processed in 0.060305 second(s), 22 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表