孪生素数与间4孪生素数数量相等
孪生素数不用说啦,间4孪生素数是指相差为4的相邻素数对: (3,7), (7,11), (13,17),(19,23),……将自然数分成等长段,段长 2 亿,统计每一段内的孪生素数对数量\( N_2\) 和间4孪生素数对数量数\( N_4\) ,结果显示在每一段内\( N_2/N_4\approx1\) 。
所以当段数越来越多时,总计 \( \sum N_4/\sum N_2\)之值越来越趋近于 \( 1 \)。
因此我有一个猜想,孪生素数与间4孪生素数数量相等。
下面是统计数据表,您感觉这个猜想靠谱吗?
范围 间距2组数 间距4组数
(亿) `N_2` `N_4` `∑N_2` `∑N_4` `∑N_4/∑N_2`
--------------------------------------------------------------------------------------------------------
0~2 813371 813714 813371 813714 1.000421701
2~4 694362 694590 1507733 1508304 1.000378714
4~6 658568 658968 2166301 2167272 1.000448229
6~8 636450 636771 2802751 2804043 1.000460975
8~10 621755 620636 3424506 3424679 1.000050518
10~12 609332 608737 4033838 4033416 0.999895384
12~14 598861 599062 4632699 4632478 0.999952295
14~16 591283 591641 5223982 5224119 1.000026225
16~18 584603 585252 5808585 5809371 1.000135316
18~20 579456 577596 6388041 6386967 0.999831873
20~22 572636 572879 6960677 6959846 0.999880615
22~24 567966 568634 7528643 7528480 0.999978349
24~26 564228 565291 8092871 8093771 1.000111208
26~28 559887 560488 8652758 8654259 1.000173470
28~30 557386 556782 9210144 9211041 1.000097392
30~32 552758 554105 9762902 9765146 1.000229849
32~34 550255 549189 10313157 10314335 1.000114223
34~36 546307 547081 10859464 10861416 1.000179751
36~38 543719 543805 11403183 11405221 1.000178722
38~40 541255 541487 11944438 11946708 1.000190046
40~42 539674 538331 12484112 12485039 1.000074254
42~44 536708 536795 13020820 13021834 1.000077875
44~46 534293 534196 13555113 13556030 1.000067649
46~48 532193 532198 14087306 14088228 1.000065448
48~50 530860 530515 14618166 14618743 1.000039471
50~52 529696 527610 15147862 15146353 0.999900381
52~54 526561 526345 15674423 15672698 0.999889948
54~56 525018 524831 16199441 16197529 0.999881971
56~58 523637 522491 16723078 16720020 0.999817138
58~60 521331 521662 17244409 17241682 0.999841861
60~62 520128 519861 17764537 17761543 0.999831461
62~64 518898 518615 18283435 18280158 0.999820766
64~66 516591 517309 18800026 18797467 0.999863883
66~68 515545 516183 19315571 19313650 0.999900546
68~70 514590 514129 19830161 19827779 0.999879879
70~72 513744 512729 20343905 20340508 0.999833021
72~74 511399 511963 20855304 20852471 0.999864159
74~76 510016 510914 21365320 21363385 0.999909432
76~78 510036 510071 21875356 21873456 0.999913144
78~80 508820 509753 22384176 22383209 0.999956799
80~82 507535 507038 22891711 22890247 0.999936046
82~84 506901 505664 23398612 23395911 0.999884565
84~86 505542 505099 23904154 23901010 0.999868474
86~88 503627 503427 24407781 24404437 0.999862994
88~90 503429 503432 24911210 24907869 0.999865883
90~92 501870 502337 25413080 25410206 0.999886908
92~94 501626 501278 25914706 25911484 0.999875669
94~96 500405 500403 26415111 26411887 0.999877948
96~98 498727 499835 26913838 26911722 0.999921378
98~100 498841 498276 27412679 27409998 0.999902198
100~102 497708 498176 27910387 27908174 0.999920710
102~104 496853 495970 28407240 28404144 0.999891013
104~106 495634 496950 28902874 28901094 0.999938414
106~108 493758 494151 29396632 29395245 0.999952817
108~110 493221 494358 29889853 29889603 0.999991635
110~112 494099 493834 30383952 30383437 0.999983050
112~114 493599 492138 30877551 30875575 0.999936005
114~116 491979 492096 31369530 31367671 0.999940738
116~118 491702 491689 31861232 31859360 0.999941245
118~120 490915 490382 32352147 32349742 0.999925661
120~122 490421 489672 32842568 32839414 0.999903966
122~124 489033 489137 33331601 33328551 0.999908495
124~126 488663 488353 33820264 33816904 0.999900651
126~128 487568 487247 34307832 34304151 0.999892706
128~130 487347 487407 34795179 34791558 0.999895933
130~132 486855 486949 35282034 35278507 0.999900034
132~134 486401 485871 35768435 35764378 0.999886575
134~136 485115 485417 36253550 36249795 0.999896423
136~138 371701 371740 36625251 36621535 0.999898539
138~140 484830 483944 37110081 37105479 0.999875990
140~142 484540 483654 37594621 37589133 0.999854021
142~144 483077 483401 38077698 38072534 0.999864382
144~146 483384 482316 38561082 38554850 0.999838386
146~148 481822 482327 39042904 39037177 0.999853315
148~150 482125 481139 39525029 39518316 0.999830158
150~152 480618 480530 40005647 39998846 0.999829998
152~154 480424 480271 40486071 40479117 0.999828237
154~156 478569 479637 40964640 40958754 0.999856315
156~158 479701 478934 41444341 41437688 0.999839471
158~160 478720 479379 41923061 41917067 0.999857023
160~162 478976 477877 42402037 42394944 0.999832720
162~164 477203 478359 42879240 42873303 0.999861541
164~166 476864 477100 43356104 43350403 0.999868507
166~168 476641 475809 43832745 43826212 0.999850956
168~170 476431 476740 44309176 44302952 0.999859532
170~172 476951 474882 44786127 44777834 0.999814831
172~174 475489 475074 45261616 45252908 0.999807607
174~176 474589 474915 45736205 45727823 0.999816731
176~178 473283 474595 46209488 46202418 0.999847001
178~180 474037 473809 46683525 46676227 0.999843670
180~182 474207 473904 47157732 47150131 0.999838817
182~184 472454 472299 47630186 47622430 0.999837162
184~186 471892 472584 48102078 48095014 0.999853145
186~188 472823 471309 48574901 48566323 0.999823406
188~190 470740 471332 49045641 49037655 0.999837172
190~192 471366 471764 49517007 49509419 0.999846759
192~194 470483 471350 49987490 49980769 0.999865546
194~196 470409 469799 50457899 50450568 0.999854710
196~198 470355 470134 50928254 50920702 0.999851712
198~200 469576 468909 51397830 51389611 0.999840090
200~202 469226 469996 51867056 51859607 0.999856382
202~204 468782 468567 52335838 52328174 0.999853561
204~206 467960 468503 52803798 52796677 0.999865142
206~208 467941 467973 53271739 53264650 0.999866927
208~210 468277 467587 53740016 53732237 0.999855247
210~212 467571 467672 54207587 54199909 0.999858359
212~214 467652 466694 54675239 54666603 0.999842049
214~216 467433 466282 55142672 55132885 0.999822514
216~218 466003 465648 55608675 55598533 0.999817618
218~220 465206 465190 56073881 56063723 0.999818846
220~222 464721 465573 56538602 56529296 0.999835404
222~224 463815 464458 57002417 56993754 0.999848023
224~226 465141 466077 57467558 57459831 0.999865541
226~228 464240 463973 57931798 57923804 0.999862010
228~230 464779 463264 58396577 58387068 0.999837165
230~232 463178 463035 58859755 58850103 0.999836016
232~234 462913 463730 59322668 59313833 0.999851068
234~236 463172 462978 59785840 59776811 0.999848977
236~238 462549 462315 60248389 60239126 0.999846253
238~240 462640 462520 60711029 60701646 0.999845448
240~242 461759 462363 61172788 61164009 0.999856488
242~244 462848 462543 61635636 61626552 0.999852617
244~246 460911 460487 62096547 62087039 0.999846883
246~248 460235 461070 62556782 62548109 0.999861357
248~250 460927 461150 63017709 63009259 0.999865910
250~252 460258 460644 63477967 63469903 0.999872963
252~254 459825 460685 63937792 63930588 0.999887327
254~256 459253 459420 64397045 64390008 0.999890724
256~258 459394 458711 64856439 64848719 0.999880967
258~260 459217 460479 65315656 65309198 0.999901126
260~262 459260 458599 65774916 65767797 0.999891767
262~264 459452 459058 66234368 66226855 0.999886569
264~266 457309 458412 66691677 66685267 0.999903886
266~268 457356 457804 67149033 67143071 0.999911212
268~270 457324 458163 67606357 67601234 0.999924223
270~272 457081 457621 68063438 68058855 0.999932665
272~274 457651 457480 68521089 68516335 0.999930619
274~276 456475 456929 68977564 68973264 0.999937660
276~278 457050 456452 69434614 69429716 0.999929458
278~280 456955 457085 69891569 69886801 0.999931780
280~282 456685 456128 70348254 70342929 0.999924305
282~284 456503 455280 70804757 70798209 0.999907520
284~286 456301 455945 71261058 71254154 0.999903116
286~288 455071 456018 71716129 71710172 0.999916936
288~290 455882 455089 72172011 72165261 0.999906473
290~292 454771 455154 72626782 72620415 0.999912332
292~294 455178 454534 73081960 73074949 0.999904066
294~296 454380 454383 73536340 73529332 0.999904700
296~298 454130 454341 73990470 73983673 0.999908136
298~300 453878 452840 74444348 74436513 0.999894753
300~302 453321 453763 74897669 74890276 0.999901291
302~304 452246 453463 75349915 75343739 0.999918035
304~306 453484 452758 75803399 75796497 0.999908948
306~308 452161 453388 76255560 76249885 0.999925579
308~310 452047 451062 76707607 76700947 0.999913176
310~312 452145 452906 77159752 77153853 0.999923548
312~314 451928 452035 77611680 77605888 0.999925372
314~316 452429 452683 78064109 78058571 0.999929058
316~318 451316 451824 78515425 78510395 0.999935936
318~320 451326 452409 78966751 78962804 0.999950016
320~322 450710 450688 79417461 79413492 0.999950023
322~324 451229 451639 79868690 79865131 0.999955439
324~326 450928 450478 80319618 80315609 0.999950086
326~328 450594 451917 80770212 80767526 0.999966745
328~330 449799 451039 81220011 81218565 0.999982196
330~332 449809 449916 81669820 81668481 0.999983604
332~334 450055 448810 82119875 82117291 0.999968533
334~336 448715 449641 82568590 82566932 0.999979919
336~338 449290 449361 83017880 83016293 0.999980883
338~340 448728 449930 83466608 83466223 0.999995387
340~342 447792 447973 83914400 83914196 0.999997568
342~344 449385 448731 84363785 84362927 0.999989829
344~346 448552 449186 84812337 84812113 0.999997358
346~348 447259 448114 85259596 85260227 1.000007400
348~350 447730 448228 85707326 85708455 1.000013172
350~352 447995 447883 86155321 86156338 1.000011804
352~354 447867 447490 86603188 86603828 1.000007390
354~356 447786 446675 87050974 87050503 0.999994589
356~358 447150 447760 87498124 87498263 1.000001588
358~360 446744 447850 87944868 87946113 1.000014156
360~362 447237 446745 88392105 88392858 1.000008518
362~364 446643 446184 88838748 88839042 1.000003309
364~366 446518 446754 89285266 89285796 1.000005936
366~368 445955 446411 89731221 89732207 1.000010988
368~370 446154 446674 90177375 90178881 1.000016700
370~372 446069 445890 90623444 90624771 1.000014643
372~374 446318 445117 91069762 91069888 1.000001383
374~376 445335 446083 91515097 91515971 1.000009550
376~378 444523 445432 91959620 91961403 1.000019388
378~380 444674 445636 92404294 92407039 1.000029706
380~382 445084 445463 92849378 92852502 1.000033645
382~384 445100 443693 93294478 93296195 1.000018404
384~386 444017 444124 93738495 93740319 1.000019458
386~388 444006 443401 94182501 94183720 1.000012942
388~390 443721 444398 94626222 94628118 1.000020036
390~392 444407 443409 95070629 95071527 1.000009445
392~394 444164 443875 95514793 95515402 1.000006375
394~396 443163 443139 95957956 95958541 1.000006096
396~398 443522 443601 96401478 96402142 1.000006887
398~400 443959 442983 96845437 96845125 0.999996778
400~402 442583 443205 97288020 97288330 1.000003186
402~404 443201 442425 97731221 97730755 0.999995231
404~406 442705 442664 98173926 98173419 0.999994835
406~408 443277 442365 98617203 98615784 0.999985611
408~410 441990 443141 99059193 99058925 0.999997294
410~412 441484 441344 99500677 99500269 0.999995899
412~414 441989 442403 99942666 99942672 1.000000060
414~416 441121 442013 100383787 100384685 1.000008945
416~418 441871 441067 100825658 100825752 1.000000932
418~420 441727 441131 101267385 101266883 0.999995042
420~422 441956 441525 101709341 101708408 0.999990826
422~424 440596 440155 102149937 102148563 0.999986549
424~426 440853 441286 102590790 102589849 0.999990827
426~428 440506 440932 103031296 103030781 0.999995001
428~430 440371 440054 103471667 103470835 0.999991959
430~432 440619 441114 103912286 103911949 0.999996756
432~434 440907 440173 104353193 104352122 0.999989736
434~336 441053 439820 104794246 104791942 0.999978014
436~338 439994 439495 105234240 105231437 0.999973364
438~440 439598 440069 105673838 105671506 0.999977932
440~442 438518 439803 106112356 106111309 0.999990133
442~444 439979 439547 106552335 106550856 0.999986119
444~446 439511 439552 106991846 106990408 0.999986559
446~448 438251 439229 107430097 107429637 0.999995718
448~450 439407 439592 107869504 107869229 0.999997450
450~452 438841 439325 108308345 108308554 1.000001929
452~454 438505 439334 108746850 108747888 1.000009545
454~456 437975 437763 109184825 109185651 1.000007565
456~458 438045 438818 109622870 109624469 1.000014586
458~460 438344 437820 110061214 110062289 1.000009767
460~462 437312 438779 110498526 110501068 1.000023004
462~464 436989 438047 110935515 110939115 1.000032451
464~466 438290 438110 111373805 111377225 1.000030707
466~468 437020 437531 111810825 111814756 1.000035157
468~470 436315 437868 112247140 112252624 1.000048856
470~472 437196 437019 112684336 112689643 1.000047096
472~474 437383 437591 113121719 113127234 1.000048752
474~476 437301 437318 113559020 113564552 1.000048714
476~478 436644 436052 113995664 114000604 1.000043334
478~480 437125 437494 114432789 114438098 1.000046394
480~482 436397 436425 114869186 114874523 1.000046461
482~484 436469 436146 115305655 115310669 1.000043484
484~486 436666 436848 115742321 115747517 1.000044892
486~488 435706 436400 116178027 116183917 1.000050698
488~490 435975 435237 116614002 116619154 1.000044179
490~492 435977 434733 117049979 117053887 1.000033387
492~494 436291 435626 117486270 117489513 1.000027603
494~496 435708 436382 117921978 117925895 1.000033216
496~498 434962 435113 118356940 118361008 1.000034370
498~500 435471 434871 118792411 118795879 1.000029193
500~502 435516 433873 119227927 119229752 1.000015306
502~504 435707 435472 119663634 119665224 1.000013287 如果素数分布是“随机”的话,那么不管间隔为2,4,6,还是8,10,它们出现的频率或者说期望值在范围足够大的情况应该都是一样的。如果有不一样,那一定是有一些特别的原因在那里了。 1、我们回到源头去找答案。
素数可分为两类:6n-1和6n+1。等模同余系里的素数应该一样多。
2、同理:
3n-2与3n+2的素数一样多。
n^2-3与n^2+3的素数一样多。
n^3-4与n^3+4的素数一样多。
n+n^2-5与n+n^2+5的素数一样多。
。。。。。。
3、联系本题。
孪生素数:6n-1与6n+1是一对,同属6n。
间4孪生素数:6n+1与6n+5是一对,同属6n。
所以孪生素数与间4孪生素数一样多。 这也太简单了,问题是:6n-1与6n+1不是每个都是素数的 按照哈代和李特伍德关于孪生素数分布密度公式的启发式推导,一样可以得出间4孪生素数的分布密度公式,两者就是一样的。
页:
[1]