student_qwh 发表于 2017-11-30 20:56:15

a+b

zeroieme 发表于 2017-12-1 01:12:46

算下前6项
\(1+\sqrt{5},-\frac{1}{\sqrt{5}},\frac{1}{4} \left(5-\sqrt{5}\right),1+\sqrt{5},-\frac{1}{\sqrt{5}},\frac{1}{4} \left(5-\sqrt{5}\right)\)
后面步骤你应当会了。

student_qwh 发表于 2017-12-1 19:23:49

谢谢

mathematica 发表于 2018-3-8 14:51:56

(*https://bbs.emath.ac.cn/thread-9736-1-2.html*)
Clear["Global`*"];(*Clear all variables*)
a=Sqrt+1
list={a}
Do;list=Append,{k,59}]
aa=Total@list
bb=Times@@list
cc=FullSimplify


表是
\[\left\{\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}},\sqrt{5}+1,-\frac{1}{\sqrt{5}},\frac{1}{1+\frac{1}{\sqrt{5}}}\right\}\]

求和结果是
\
求积的结果是
\
两者的和是
\

zeroieme 发表于 2018-3-17 23:54:47

Sqrt+1//NestList[(1-#)^-1&,#,59]&//(Plus@@#)+(Times@@#)&//Simplify
页: [1]
查看完整版本: a+b