王守恩 发表于 2023-12-23 10:47:59

A000178    这样不也挺好?        \(\D a(n)=\prod_{k=0}^{n}k!\)

{1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000,
265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000,
69113789582492712943486800506462734562847413501952000000000000000, 90378331112371142262979521568630736335023247731599748366336000000000000000000,
1890966832292234727042877370627225068196418587883634153182519380410368000000000000000000000}

王守恩 发表于 2023-12-24 18:23:54

northwolves 发表于 2023-12-12 16:44
第一次接触到这个问题是好多好多年前了,大概初中二年级吧。有位邻居小哥哥(曾参加过80年代希望杯数学竞赛 ...
   A226053   这通项公式可以调整吗?
1, 3, 24, 815, 2263886, 9073564639850, 176228569027146222763928594, 84205747605016031994416006285857418872429042805656089,
18266661981464368900241497883663389900558206941880190662422226631656613685596278758397778714969996297024565,
Table == x1, Floor == x2, Floor[-1/(x + x1^-1 - x2^-1)] == x3, Floor == x4,
Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1)] == x5,Floor == x6, Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1)] == x7,
Floor == x8, Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1 + x7^-1 - x8^-1)] == x9,
Floor == x10}, {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}], {x, 1/Sqrt - 1, 1/Sqrt - 1}]

王守恩 发表于 2024-1-8 08:05:45

A081721---1, 3, 10, 55, 377, 4291, 60028, 1058058, 21552969, 500280022, 12969598086, 371514016094, 11649073935505, 396857785692525, 14596464294191704, 576460770691256356,

\(\D a(n)=\sum_{k=1}^{n}\frac{n^{GCD(n, k)}}{2n}+\frac{n^{\lceil n/2\rceil}+n^{\lceil(n+1)/2\rceil}}{4}\)

OEIS没有我们的好。还可以更好吗?谢谢!

王守恩 发表于 2024-1-11 13:14:20

A004041        这样不也挺好!?\(\D a(n)=\sum_{k=1}^{n}\frac{(2n-1)!!}{2k-1}\)

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, ......

王守恩 发表于 2024-1-16 15:23:42

A001175        F周期数       
1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
F周期数公式。Module[{nn = 1000, F}, F = Fibonacci]; Table, 2][]], {n, 85}]]
A106291        L周期数       
1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, 16, 30, 48, 24, 20, 84, 72, 48, 14, 24, 30, 48, 40, 36, 16, 24, 76, 18, 56, 12, 40, 48, 88, 30, 24,
48, 32, 24, 112, 60, 72, 84, 108, 72, 20, 48, 72, 42, 58, 24, 60, 30, 48, 96, 28, 120, 136, 36, 48, 48, 70, 24, 148, 228, 40, 18, 80, 168, 78, 24, 216, 120, 168, 48, 36,
L周期数公式。n = 2; Table, {n}]; a = Mod; b = a; k = 0; While; a[] = Mod; b != a]; k, {i, 85}]
N周期数公式。n = 2; Table, {n}]; a = Mod; b = a; k = 0; While] = Mod; a = RotateLeft; b != a]; k, {i, 85}]
1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
V周期数公式。Table; a[] = Mod; b != a]; k, {n, 2, 303}]
W周期数公式。Table] = Mod; a = RotateLeft; b != a]; k, {n, 2, 303}]
{3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
说明。
1,n=150时, nn=1200, F周期数公式速度慢了。
2,N周期数公式=F周期数公式。一下子我还是找不到反例。各位网友!你能举出反例来吗?谢谢!
3,L周期数公式,N周期数公式。这两者怎么就变了?是怎么变的?这是关键。谢谢!
4,V周期数公式=W周期数公式=F周期数公式。
5,V周期数公式,W周期数公式。这两者怎么就变不出L周期数公式来了?。谢谢!

王守恩 发表于 2024-1-27 10:45:10

Table}], {n, 1, 19}]
1,7,148,6396,468576,52148160,8203541760,1733641056000,473875121664000,162705528979660800,68557495081291776000,34783759238448439296000,
20917982343202389688320000,14713230137865692249456640000,11967468761587723030592225280000,11146324252014844359615538790400000,
11785996694653187027881492375142400000,14041737888806159459892732515844096000000,18723173464036641306759645997849116672000000,
......
这串数还可以有其他通项吗?

王守恩 发表于 2024-4-4 18:33:28

A240926      这个通项也可以。
               
4, 5, 9, 20, 49, 125, 324, 845, 2209, 5780, 15129, 39605, 103684, 271445, 710649, 1860500, 4870849, 12752045, 33385284, 87403805,
228826129, 599074580, 1568397609, 4106118245, 10749957124, 28143753125, 73681302249, 192900153620, 505019158609,......
Table]^2,{n,0,30}]//FullSimplify

王守恩 发表于 2024-5-9 12:35:13

可以有通项?
0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 103, 140, 188, 242, 327, 429, 568, 755, 1010, 1322, 1751, 2331, 3058, 4067, 5373, 7095, 9409, 12422, 16443, 21754, 28758, 38059,
50328, 66572, 88065, 116471, 154070, 203939, 269699, 356716, 472070, 624281, 825926, 1092650, 1445214, 1911820, 2529171, 3345650, 4425543, 5854772, 7744558, 10244847, 13552871,
17927528, 23716045, 31372514, 41500503, 54899706, 72622993, 96069471, 127085458, 168113818, 222389771, 294187141, 389162566, 514804036, 681006890, 900863709, 1191708300,
1576444545, 2085390562, 2758656887, 3649274077, 4827426837, 6385945524, 8447622535, 11174899003, 14782676306, 19555205716, 25868514369, 34220079641, ......

王守恩 发表于 2024-5-12 19:23:31

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 103, 140, 188, 242, 327, 429, 568, 755, 1010, 1322, 1751, 2331, 3058, 4067, 5373, 7095, 9409, 12422, 16443, 21754, 28758, 38059,
50328, 66572, 88065, 116471, 154070, 203939, 269699, 356716, 472070, 624281, 825926, 1092650, 1445214, 1911820, 2529171, 3345650, 4425543, 5854772, 7744558, 10244847, 13552871,
17927528, 23716045, 31372514, 41500503, 54899706, 72622993, 96069471, 127085458, 168113818, 222389771, 294187141, 389162566, 514804036, 681006890, 900863709, 1191708300,
1576444545, 2085390562, 2758656887, 3649274077, 4827426837, 6385945524, 8447622535, 11174899003, 14782676306, 19555205716, 25868514369, 34220079641, ......
LinearRecurrence[{1,-1,2,-2,3,-3,4,-4,5,-5,6,-6,7,-7,8,-8,9,-9,10,-10,11,-11,12,-12,13,-13},{0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,103,140,188,242,327,429,568},90]

王守恩 发表于 2024-5-23 19:00:16

简单的一串数。OEIS没有。

{-1, 1, 3, 5, 9, 15, 21, 27, 35, 45, 55, 65, 77, 91, 105, 119, 135, 153, 171, 189, 209, 231, 253, 275, 299, 325, 351, 377, 405, 435, 465, 495, 527, 561, 595, 629,...
Table[(2 a - 1) (2 b + 3), {a, 9}, {b, 2 a - 4, 2 a - 1}] // Flatten
求助: -1 可以不出现吗?
页: 38 39 40 41 42 43 44 45 46 47 [48] 49 50 51 52 53 54 55 56 57
查看完整版本: 数字串的通项公式