找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2023-12-23 10:47:59 | 显示全部楼层
A000178    这样不也挺好?        \(\D a(n)=\prod_{k=0}^{n}k!\)

{1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000,
265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000,
69113789582492712943486800506462734562847413501952000000000000000, 90378331112371142262979521568630736335023247731599748366336000000000000000000,
1890966832292234727042877370627225068196418587883634153182519380410368000000000000000000000}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-12-24 18:23:54 | 显示全部楼层
northwolves 发表于 2023-12-12 16:44
第一次接触到这个问题是好多好多年前了,大概初中二年级吧。有位邻居小哥哥(曾参加过80年代希望杯数学竞赛 ...

   A226053     这通项公式可以调整吗?
1, 3, 24, 815, 2263886, 9073564639850, 176228569027146222763928594, 84205747605016031994416006285857418872429042805656089,
18266661981464368900241497883663389900558206941880190662422226631656613685596278758397778714969996297024565,
  1. Table[Solve[{Floor[-1/x] == x1, Floor[1/(x + x1^-1)] == x2, Floor[-1/(x + x1^-1 - x2^-1)] == x3, Floor[1/(x + x1^-1 - x2^-1 + x3^-1)] == x4,
  2. Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1)] == x5,Floor[1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1)] == x6, Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1)] == x7,
  3. Floor[1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1 + x7^-1)] == x8, Floor[-1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1 + x7^-1 - x8^-1)] == x9,
  4. Floor[1/(x + x1^-1 - x2^-1 + x3^-1 - x4^-1 + x5^-1 - x6^-1 + x7^-1 - x8^-1 + x9^-1)] == x10}, {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}], {x, 1/Sqrt[2] - 1, 1/Sqrt[2] - 1}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-1-8 08:05:45 | 显示全部楼层
A081721---1, 3, 10, 55, 377, 4291, 60028, 1058058, 21552969, 500280022, 12969598086, 371514016094, 11649073935505, 396857785692525, 14596464294191704, 576460770691256356,

\(\D a(n)=\sum_{k=1}^{n}\frac{n^{GCD(n, k)}}{2n}+\frac{n^{\lceil n/2\rceil}+n^{\lceil(n+1)/2\rceil}}{4}\)

OEIS没有我们的好。还可以更好吗?谢谢!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-1-11 13:14:20 | 显示全部楼层
A004041        这样不也挺好!?\(\D a(n)=\sum_{k=1}^{n}\frac{(2n-1)!!}{2k-1}\)

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, ......
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-1-16 15:23:42 | 显示全部楼层
A001175        F周期数       
1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
  1. F周期数公式。Module[{nn = 1000, F}, F = Fibonacci[Range[nn]]; Table[Length[FindTransientRepeat[Mod[F, n], 2][[2]]], {n, 85}]]
复制代码

A106291        L周期数       
1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, 16, 30, 48, 24, 20, 84, 72, 48, 14, 24, 30, 48, 40, 36, 16, 24, 76, 18, 56, 12, 40, 48, 88, 30, 24,
48, 32, 24, 112, 60, 72, 84, 108, 72, 20, 48, 72, 42, 58, 24, 60, 30, 48, 96, 28, 120, 136, 36, 48, 48, 70, 24, 148, 228, 40, 18, 80, 168, 78, 24, 216, 120, 168, 48, 36,
  1. L周期数公式。n = 2; Table[p = i; a = Join[Table[-1, {n - 1}], {n}]; a = Mod[a, p]; b = a; k = 0; While[k++; a = RotateLeft[a]; a[[n]] = Mod[Plus @@ a, p]; b != a]; k, {i, 85}]
复制代码
  1. N周期数公式。n = 2; Table[p = i; a = Join[Table[-1, {n - 1}], {n}]; a = Mod[a, p]; b = a; k = 0; While[k++; a[[n]] = Mod[Plus @@ a, p]; a = RotateLeft[a]; b != a]; k, {i, 85}]
复制代码

1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
  1. V周期数公式。Table[a = {1, 1}; b = a; k = 0; While[k++; a = RotateLeft[a]; a[[2]] = Mod[Plus @@ a, n]; b != a]; k, {n, 2, 303}]
复制代码
  1. W周期数公式。Table[a = {1, 1}; b = a; k = 0; While[k++; a[[2]] = Mod[Plus @@ a, n]; a = RotateLeft[a]; b != a]; k, {n, 2, 303}]
复制代码

{3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100, 84, 72, 48, 14, 120, 30, 48, 40, 36, 80, 24, 76, 18, 56, 60, 40, 48, 88, 30, 120,
48, 32, 24, 112, 300, 72, 84, 108, 72, 20, 48, 72, 42, 58, 120, 60, 30, 48, 96, 140, 120, 136, 36, 48, 240, 70, 24, 148, 228, 200, 18, 80, 168, 78, 120, 216, 120, 168, 48, 180,
说明。
1,n=150时, nn=1200, F周期数公式速度慢了。
2,N周期数公式=F周期数公式。一下子我还是找不到反例。各位网友!你能举出反例来吗?谢谢!
3,L周期数公式,N周期数公式。这两者怎么就变了?是怎么变的?这是关键。谢谢!
4,V周期数公式=W周期数公式=F周期数公式。
5,V周期数公式,W周期数公式。这两者怎么就变不出L周期数公式来了?。谢谢!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-1-27 10:45:10 | 显示全部楼层
  1. Table[Sum[ 2 (2 n)! (-1)^(k + 1)/(k (k + 2 n)), {k, \[Infinity]}], {n, 1, 19}]
复制代码

1,7,148,6396,468576,52148160,8203541760,1733641056000,473875121664000,162705528979660800,68557495081291776000,34783759238448439296000,
20917982343202389688320000,  14713230137865692249456640000,  11967468761587723030592225280000,  11146324252014844359615538790400000,
11785996694653187027881492375142400000,  14041737888806159459892732515844096000000,  18723173464036641306759645997849116672000000,
......
这串数还可以有其他通项吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-4 18:33:28 | 显示全部楼层
A240926      这个通项也可以。
               
4, 5, 9, 20, 49, 125, 324, 845, 2209, 5780, 15129, 39605, 103684, 271445, 710649, 1860500, 4870849, 12752045, 33385284, 87403805,
228826129, 599074580, 1568397609, 4106118245, 10749957124, 28143753125, 73681302249, 192900153620, 505019158609,  ......
  1. Table[4*Cosh[n*ArcCsch[2]]^2,{n,0,30}]//FullSimplify
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-5-9 12:35:13 | 显示全部楼层
可以有通项?
0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 103, 140, 188, 242, 327, 429, 568, 755, 1010, 1322, 1751, 2331, 3058, 4067, 5373, 7095, 9409, 12422, 16443, 21754, 28758, 38059,
50328, 66572, 88065, 116471, 154070, 203939, 269699, 356716, 472070, 624281, 825926, 1092650, 1445214, 1911820, 2529171, 3345650, 4425543, 5854772, 7744558, 10244847, 13552871,
17927528, 23716045, 31372514, 41500503, 54899706, 72622993, 96069471, 127085458, 168113818, 222389771, 294187141, 389162566, 514804036, 681006890, 900863709, 1191708300,
1576444545, 2085390562, 2758656887, 3649274077, 4827426837, 6385945524, 8447622535, 11174899003, 14782676306, 19555205716, 25868514369, 34220079641, ......

点评

数列怎么来的?  发表于 2024-5-9 13:47
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-5-12 19:23:31 | 显示全部楼层
0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 103, 140, 188, 242, 327, 429, 568, 755, 1010, 1322, 1751, 2331, 3058, 4067, 5373, 7095, 9409, 12422, 16443, 21754, 28758, 38059,
50328, 66572, 88065, 116471, 154070, 203939, 269699, 356716, 472070, 624281, 825926, 1092650, 1445214, 1911820, 2529171, 3345650, 4425543, 5854772, 7744558, 10244847, 13552871,
17927528, 23716045, 31372514, 41500503, 54899706, 72622993, 96069471, 127085458, 168113818, 222389771, 294187141, 389162566, 514804036, 681006890, 900863709, 1191708300,
1576444545, 2085390562, 2758656887, 3649274077, 4827426837, 6385945524, 8447622535, 11174899003, 14782676306, 19555205716, 25868514369, 34220079641, ......
  1. LinearRecurrence[{1,-1,2,-2,3,-3,4,-4,5,-5,6,-6,7,-7,8,-8,9,-9,10,-10,11,-11,12,-12,13,-13},{0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,103,140,188,242,327,429,568},90]
复制代码

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-5-23 19:00:16 | 显示全部楼层
简单的一串数。OEIS没有。

{-1, 1, 3, 5, 9, 15, 21, 27, 35, 45, 55, 65, 77, 91, 105, 119, 135, 153, 171, 189, 209, 231, 253, 275, 299, 325, 351, 377, 405, 435, 465, 495, 527, 561, 595, 629,...
  1. Table[(2 a - 1) (2 b + 3), {a, 9}, {b, 2 a - 4, 2 a - 1}] // Flatten
复制代码

求助: -1 可以不出现吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 20:52 , Processed in 0.029261 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表