数学研发论坛

 找回密码
 欢迎注册
查看: 3893|回复: 148

[原创] 数字串的通项公式

  [复制链接]
发表于 2018-6-17 05:46:59 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
承蒙各位大师的错爱,一年多来真是进步不少,谢谢各位大师。
一年多来,根据大师们给出的链接,在寻找数字串的过程中,
对通项公式好像有点不成熟体会,请求大师们的帮助。譬如  A041008
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, ...

\(\D a_{(4n+0)}=\bigg[1.000000000\cosh\left((4n+0)\ln(\sqrt[4]{8-\sqrt{63}}\ )\right)\bigg]\)

\(\D a_{(4n+1)}=\bigg[2.325158618\cosh\left((4n+1)\ln(\sqrt[4]{8-\sqrt{63}}\ )\right)\bigg]\)

\(\D a_{(4n+2)}=\bigg[1.414213562\cosh\left((4n+2)\ln(\sqrt[4]{8-\sqrt{63}}\ )\right)\bigg]\)

\(\D a_{(4n+3)}=\bigg[1.290234557\cosh\left((4n+3)\ln(\sqrt[4]{8-\sqrt{63}}\ )\right)\bigg]\)

        中括号[a]是a取圆整,即四舍五入。答案是在慢慢向整数靠拢!
但我做不好了,实际上只要调动4个系数的值,中括号好像是可以取消的?



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-6-17 19:07:51 | 显示全部楼层
本帖最后由 chyanog 于 2018-6-17 19:13 编辑

$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}}{3}\right)\right) & (n \bmod 4)=0 \\
\sqrt{3} \sinh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}}{3}\right)+\frac{1}{2} \tanh ^{-1}\left(\frac{\sqrt{7}}{5}\right)\right) & (n \bmod 4)=1 \\
\sqrt{2} \cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}}{3}\right)\right) & (n \bmod 4)=2 \\
\sqrt{3} \sinh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}}{3}\right)-\frac{1}{2} \tanh ^{-1}\left(\frac{\sqrt{7}}{5}\right)\right) & (n \bmod 4)=3 \\
\end{array}
\\
\end{array}$$
另外
$$\ln \left(\sqrt[4]{8-\sqrt{63}}\right)=-\frac{1}{2} \tanh ^{-1}\left(\frac{\sqrt{7}}{3}\right)$$

可以用下面的Mathematica代码检验
  1. Piecewise[{{Cosh[(1/2)*n*ArcTanh[Sqrt[7]/3]], Mod[n, 4] == 0}, {Sqrt[3]*Sinh[(1/2)*n*ArcTanh[Sqrt[7]/3] + (1/2)*ArcTanh[Sqrt[7]/5]], Mod[n, 4] == 1}, {Sqrt[2]*Cosh[(1/2)*n*ArcTanh[Sqrt[7]/3]], Mod[n, 4] == 2}, {Sqrt[3]*Sinh[(1/2)*n*ArcTanh[Sqrt[7]/3] - (1/2)*ArcTanh[Sqrt[7]/5]], Mod[n, 4] == 3}}, 0]
  2. Table[%, {n, 20}] // RootReduce
复制代码

点评

小恩恩,说明你文化基础太差了!  发表于 2019-5-25 20:25
谢谢chyanog!我慢慢的来领会,要学的知识太多了。  发表于 2018-6-17 19:54
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-18 14:14:19 | 显示全部楼层
chyanog 发表于 2018-6-17 19:07
$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}} ...

谢谢chyanog!   
中括号是可以去掉的!
题目:  A041008
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, ...

\(\D a_{(4n+0)}=\sqrt{1}\cosh\left((4n+0)\ln(\sqrt[4]{8+\sqrt{63}}\ \right)\)

\(\D a_{(4n+1)}=\sqrt{3}\sinh\left((4n+1)\ln(\sqrt[4]{8+\sqrt{63}}\ )-\frac{1}{4}\ln(\frac{16}{9}-\frac{5}{9}\sqrt{7}\ )\right)\)

\(\D a_{(4n+2)}=\sqrt{2}\cosh\left((4n+2)\ln(\sqrt[4]{8+\sqrt{63}}\ \right)\)

\(\D a_{(4n+3)}=\sqrt{3}\sinh\left((4n+3)\ln(\sqrt[4]{8+\sqrt{63}}\ )+\frac{1}{4}\ln(\frac{16}{9}-\frac{5}{9}\sqrt{7}\ )\right)\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-20 12:48:04 | 显示全部楼层
本帖最后由 王守恩 于 2018-6-20 13:05 编辑
王守恩 发表于 2018-6-18 14:14
谢谢chyanog!   
中括号是可以去掉的!
题目:  A041008


谢谢chyanog!我还是进步不少。谢谢chyanog!
有这样一串数: 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570,
176214841,  2290792932, 32071101049,  481066515734,  7697064251745,
  130850092279664,   2355301661033953,   44750731559645106,
895014631192902121, 18795307255050944540, 413496759611120779881,

\(\D a(n)=\biggm[0.238405844...×n!\cosh(1)\biggm]\)

中括号还可以去掉吗?! 谢谢chyanog!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-21 16:40:25 | 显示全部楼层
chyanog 发表于 2018-6-17 19:07
$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}} ...

有这样一串数: 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570,
176214841,  2290792932, 32071101049,  481066515734,  7697064251745,
  130850092279664,   2355301661033953,   44750731559645106,
895014631192902121, 18795307255050944540, 413496759611120779881,

\(\D a(n)=\biggm[\frac{n!}{e}\biggm]\)

中括号还可以去掉吗?!

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-23 18:10:43 | 显示全部楼层
chyanog 发表于 2018-6-17 19:07
$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}} ...

有这样一串数:0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187,
210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715,
737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335, 1365, 1426, ...


\(当 n 是奇数时,\D a(n)=\frac{(3n+1)(n+1)}{8}\)

\(当 n 是偶数时,\D a(n)=\frac{(3n+2)(n+0)}{8}\)

\(当 n 是奇数时,\D a(n)=\biggm[\cosh\left(\ln(\frac{(3n+1)(n+1)}{4})\right)\biggm]\)

\(当 n 是偶数时,\D a(n)=\biggm[\cosh\left(\ln(\frac{(3n+2)(n+0)}{4})\right)\biggm]\)

\(当 n 是奇数时,\D a(n)=\biggm[\cosh\left(2\tanh^{-1}(\frac{3n^2+4n-3}{3n^2+4n+5})\right)\biggm]\)

\(当 n 是偶数时,\D a(n)=\biggm[\cosh\left(2\tanh^{-1}(\frac{3n^2+2n-4}{3n^2+2n+4})\right)\biggm]\)

前面2个公式已经是够好的了,后面4个完全是画蛇添足!
但对一个无赖的小孩来说:中括号也可以去掉吗?!

主题解不了,牵出个副产品活跃一下气氛。

\(\D 1+\frac{1}{2}+\frac{1}{5}+\frac{1}{7}+\frac{1}{12}+\frac{1}{15}+\frac{1}{22}+\frac{1}{26}+\cdots=6-\sqrt{\frac{4}{3}}\pi\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-26 10:11:04 | 显示全部楼层
本帖最后由 王守恩 于 2018-6-26 15:10 编辑
chyanog 发表于 2018-6-17 19:07
$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}} ...


  谢谢大家!好像有点感觉了。
有这样一串数:1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482,
50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226,
1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647, 1385331749802026, ......


\(\D a_{(n)}=\cosh\left(\ n\ \cosh^{-1}(2)\right)\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-7-3 16:29:54 | 显示全部楼层
chyanog 发表于 2018-6-17 19:07
$$\begin{array}{cc}
\begin{array}{cc}
\cosh \left(\frac{1}{2} n \tanh ^{-1}\left(\frac{\sqrt{7}} ...


有这样一串数: 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325,
362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297,
1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, .......

\(\D a_{(n)}=2\ n\cos\Big(\ln(n)\ i\Big)\)

\(说明。本来有挺简单的公式: a_{(n)}=n^2+1,\)
\(想想要把\cos,\ln,\ i,都搅在一起也不是那么容易。\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-4 13:49:33 | 显示全部楼层
本帖最后由 王守恩 于 2018-12-4 15:10 编辑
王守恩 发表于 2018-7-3 16:29
有这样一串数: 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325,
  ...


有这样一串数:1, 2, 5, 11, 22, 45, 91, 182, 365, 731, 1462, 2925, 5851, 11702, 23405, 46811,
93622, 187245, 374491, 748982, 1497965, 2995931, 5991862, 11983725, 23967451, 47934902,
95869805, 191739611, 383479222, 766958445, 1533916891,....

通项公式可以是这样,大家还有更好的吗?
中括号\([a]\)是a取圆整,即四舍五入。
中括号还可以去掉吗?! \[a(n)=[\frac{(2^n-1)×5}{7}]\]

这串数的来历:汉诺塔问题。甲柱有 1~10 号盘,要移动到乙柱为 1,3,5,7,9,丙柱为 2,4,6,8,10,至少要移动几次?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-16 10:21:45 | 显示全部楼层
王守恩 发表于 2018-12-4 13:49
有这样一串数:1, 2, 5, 11, 22, 45, 91, 182, 365, 731, 1462, 2925, 5851, 11702, 23405, 46811,
9 ...

有这样一串数:0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690,
87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242,
89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530,.........

通项公式是这样:\(\ \ a(n)=\frac{2^n}{3}+\frac{(-1)^n}{6}-\frac{1}{2}\)

这串数的来历:汉诺塔问题。甲柱有 1~n 号盘,甲柱自留n,n-3,n-6,n-9,n-12,....号盘,
移动到乙柱为 n-1,n-4,n-7,n-10,n-13,...号盘,移动到丙柱为 n-2,n-5,n-8,n-11,n-14,...号盘,
至少要移动几次?



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-7-21 22:45 , Processed in 0.058094 second(s), 17 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表