数学研发论坛

 找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

  [复制链接]
 楼主| 发表于 2018-12-26 10:10:33 | 显示全部楼层
本帖最后由 王守恩 于 2018-12-26 10:23 编辑

  有这样一串数:A000045               
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269,
2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169,...........

\(a(01)=001=\frac{2}{2^{1}}\)
\(a(02)=002=\frac{2}{2^{2}}+\frac{3}{2^{1}}\)
\(a(03)=003=\frac{2}{2^{3}}+\frac{3}{2^{2}}+\frac{4}{2^{1}}\)
\(a(04)=005=\frac{2}{2^{4}}+\frac{3}{2^{3}}+\frac{4}{2^{2}}+\frac{7}{2^{1}}\)
\(a(05)=008=\frac{2}{2^{5}}+\frac{3}{2^{4}}+\frac{4}{2^{3}}+\frac{7}{2^{2}}+\frac{11}{2^{1}}\)
\(a(06)=013=\frac{2}{2^{6}}+\frac{3}{2^{5}}+\frac{4}{2^{4}}+\frac{7}{2^{3}}+\frac{11}{2^{2}}+\frac{18}{2^{1}}\)
\(a(07)=021=\frac{2}{2^{7}}+\frac{3}{2^{6}}+\frac{4}{2^{5}}+\frac{7}{2^{4}}+\frac{11}{2^{3}}+\frac{18}{2^{2}}+\frac{29}{2^{1}}\)
\(a(08)=034=\frac{2}{2^{8}}+\frac{3}{2^{7}}+\frac{4}{2^{6}}+\frac{7}{2^{5}}+\frac{11}{2^{4}}+\frac{18}{2^{3}}+\frac{29}{2^{2}}+\frac{47}{2^{1}}\)
\(a(09)=055=\frac{2}{2^{9}}+\frac{3}{2^{8}}+\frac{4}{2^{7}}+\frac{7}{2^{6}}+\frac{11}{2^{5}}+\frac{18}{2^{4}}+\frac{29}{2^{3}}+\frac{47}{2^{2}}+\frac{76}{2^{1}}\)
\(a(10)=089=\frac{2}{2^{10}}+\frac{3}{2^{9}}+\frac{4}{2^{8}}+\frac{7}{2^{7}}+\frac{11}{2^{6}}+\frac{18}{2^{5}}+\frac{29}{2^{4}}+\frac{47}{2^{3}}+\frac{76}{2^{2}}+\frac{123}{2^{1}}\)
\(a(11)=144=\frac{2}{2^{11}}+\frac{3}{2^{10}}+\frac{4}{2^{9}}+\frac{7}{2^{8}}+\frac{11}{2^{7}}+\frac{18}{2^{6}}+\frac{29}{2^{5}}+\frac{47}{2^{4}}+\frac{76}{2^{3}}+\frac{123}{2^{2}}+\frac{199}{2^{1}}\)
\(a(12)=233=\frac{2}{2^{12}}+\frac{3}{2^{11}}+\frac{4}{2^{10}}+\frac{7}{2^{9}}+\frac{11}{2^{8}}+\frac{18}{2^{7}}+\frac{29}{2^{6}}+\frac{47}{2^{5}}+\frac{76}{2^{4}}+\frac{123}{2^{3}}+\frac{199}{2^{2}}+\frac{322}{2^{1}}\)
\(a(13)=377=\frac{2}{2^{13}}+\frac{3}{2^{12}}+\frac{4}{2^{11}}+\frac{7}{2^{10}}+\frac{11}{2^{9}}+\frac{18}{2^{8}}+\frac{29}{2^{7}}+\frac{47}{2^{6}}+\frac{76}{2^{5}}+\frac{123}{2^{4}}+\frac{199}{2^{3}}+\frac{322}{2^{2}}+\frac{521}{2^{1}}\)
\(a(14)=610=\frac{2}{2^{14}}+\frac{3}{2^{13}}+\frac{4}{2^{12}}+\frac{7}{2^{11}}+\frac{11}{2^{10}}+\frac{18}{2^{9}}+\frac{29}{2^{8}}+\frac{47}{2^{7}}+\frac{76}{2^{6}}+\frac{123}{2^{5}}+\frac{199}{2^{4}}+\frac{322}{2^{3}}+\frac{521}{2^{1}}+\frac{843}{2^{1}}\)
...................



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-26 11:57:39 | 显示全部楼层
王守恩 发表于 2018-12-26 10:10
有这样一串数:A000045               
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,  ...

数列有递推关系 `a_{n+2}=a_{n+1}+a_n`,特征方程为 `x^2=x+1`,特征根 `x_{1,2}=\frac{1\pm\sqrt{5}}{2}`,通项公式为 `a_n=\frac{5+\sqrt{5}}{10}(\frac{1+\sqrt{5}}{2})^n+\frac{5-\sqrt{5}}{10}(\frac{1-\sqrt{5}}{2})^n`

点评

谢谢kastin!我在想:算式右边那么多数相加的和,怎么就是左边的数。  发表于 2018-12-26 15:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-27 15:28:53 | 显示全部楼层
设 `b_n` 满足 `b_n=b_{n-1}+b_{n-2}~(n\geqslant 3,~b_0=2,\,b_1=3,\,b_2=4)`,那么算式右边和式可写为 `a_n=\sum_{k=0}^n(\frac 12)^{n-k}b_k`,即 `2^na_n=\sum_{k=0}^n2^kb_k`,而 `b_n` 的特征方程为 `x^2=x+1`,特征根跟上面一样,`b_n` 通项求出后,`a_n` 就不难求了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-27 18:56:17 | 显示全部楼层

这些得数都是正整数!?

kastin 发表于 2018-12-27 15:28
设 `b_n` 满足 `b_n=b_{n-1}+b_{n-2}~(n\geqslant 3,~b_0=2,\,b_1=3,\,b_2=4)`,那么算式右边和式可写为 `a ...

谢谢kastin!

\(a_{n},b_{n}\ \)也可以这样表示
\(a_{1}=1=\sqrt{0.8}\cosh(1\ln(\sqrt{1.25}+0.5))\)
\(a_{2}=1=\sqrt{0.8}\sinh(2\ln(\sqrt{1.25}+0.5))\)
\(a_{3}=2=\sqrt{0.8}\cosh(3\ln(\sqrt{1.25}+0.5))\)
\(a_{4}=3=\sqrt{0.8}\sinh(4\ln(\sqrt{1.25}+0.5))\)
\(a_{5}=5=\sqrt{0.8}\cosh(5\ln(\sqrt{1.25}+0.5))\)
\(a_{6}=8=\sqrt{0.8}\sinh(6\ln(\sqrt{1.25}+0.5))\)
\(a_{7}=13=\sqrt{0.8}\cosh(7\ln(\sqrt{1.25}+0.5))\)
\(a_{8}=21=\sqrt{0.8}\sinh(8\ln(\sqrt{1.25}+0.5))\)
\(a_{9}=34=\sqrt{0.8}\cosh(9\ln(\sqrt{1.25}+0.5))\)
..........
\(b_{2}=3=2\cosh(2\ln(\sqrt{1.25}+0.5))\)
\(b_{3}=4=2\sinh(3\ln(\sqrt{1.25}+0.5))\)
\(b_{4}=7=2\cosh(4\ln(\sqrt{1.25}+0.5))\)
\(b_{5}=11=2\sinh(5\ln(\sqrt{1.25}+0.5))\)
\(b_{6}=18=2\cosh(6\ln(\sqrt{1.25}+0.5))\)
\(b_{7}=29=2\sinh(7\ln(\sqrt{1.25}+0.5))\)
\(b_{8}=47=2\cosh(8\ln(\sqrt{1.25}+0.5))\)
\(b_{9}=76=2\sinh(9\ln(\sqrt{1.25}+0.5))\)
............
看着这些美妙的数字,我不得不想,
我们只是抽出单独的 \(1\) 行,譬如:怎么知道这个和是\(\ 55\)?
\(\frac{2}{2^{9}}+\frac{3}{2^{8}}+\frac{4}{2^{7}}+\frac{7}{2^{6}}+\frac{11}{2^{5}}+\frac{18}{2^{4}}+\frac{29}{2^{3}}+\frac{47}{2^{2}}+\frac{76}{2^{1}}\)

非常感谢kastin!这一年来还真是进步不少!感谢kastin!

   

点评

你这个问法就好比问1+2+3+4为什么和是10,是不是算一下不就知道了?  发表于 2018-12-27 21:50
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-29 14:49:04 | 显示全部楼层
kastin 发表于 2018-12-27 15:28
设 `b_n` 满足 `b_n=b_{n-1}+b_{n-2}~(n\geqslant 3,~b_0=2,\,b_1=3,\,b_2=4)`,那么算式右边和式可写为 `a ...

有这样一串数:A000045               
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269,
2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169,..........

谢谢kastin !我们可以有这样的通项公式。谢谢kastin !

\(a_{1}=1=\sum_{k=0}^{1}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{2}}\)
\(a_{2}=2=\sum_{k=0}^{2}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{3}}\)
\(a_{3}=3=\sum_{k=0}^{3}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{4}}\)
\(a_{4}=5=\sum_{k=0}^{4}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{5}}\)
\(a_{5}=8=\sum_{k=0}^{5}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{6}}\)
\(a_{6}=13=\sum_{k=0}^{6}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{7}}\)
\(a_{7}=21=\sum_{k=0}^{7}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{8}}\)
\(a_{8}=34=\sum_{k=0}^{8}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{9}}\)
\(a_{9}=55=\sum_{k=0}^{9}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{10}}\)
\(a_{10}=89=\sum_{k=0}^{10}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{11}}\)
\(a_{11}=144=\sum_{k=0}^{11}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{12}}\)
\(a_{12}=233=\sum_{k=0}^{12}\frac{(1+\sqrt{5})^{k}+(1-\sqrt{5})^{k}}{2^{13}}\)
..............
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-31 14:35:13 | 显示全部楼层
本帖最后由 王守恩 于 2018-12-31 20:11 编辑
王守恩 发表于 2018-12-22 15:16
好不容易,我在"OEIS"找到下面这串数(A007664):

1, 3, 5, 9, 13, 17, 25, 33, 41, 49, 65, 81, 97,  ...


进一步明朗 13 楼的 4 柱汉诺塔问题,"OEIS"(A007664):

1, 3, 5, 9, 13, 17, 25, 33, 41, 49, 65, 81, 97, 113, 129, 161, 193, 225, 257, 289,
321, 385, 449, 513, 577, 641, 705, 769, 897, 1025, 1153, 1281, 1409, 1537, 1665,
1793, 2049, 2305, 2561, 2817, 3073, 3329, 3585, 3841, 4097, 4609, 5121, 5633,.....

通项公式可以是这样:

\(\D a_{n}=n\times 2^{\lbrack \sqrt{2n}-1\rbrack}-\sum_{k=1}^{\lbrack\sqrt{2n}\rbrack}\frac{k!}{(k-2)!\times 2^{3-k}}\)

中括号\(\ \lbrack a\rbrack\ \)是\(\ a\ \)取圆整,即四舍五入。
大家出出主意:这中括号还可以取消吗?

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-30 08:45:40 | 显示全部楼层
本帖最后由 王守恩 于 2019-1-30 14:02 编辑
kastin 发表于 2018-12-27 15:28
设 `b_n` 满足 `b_n=b_{n-1}+b_{n-2}~(n\geqslant 3,~b_0=2,\,b_1=3,\,b_2=4)`,那么算式右边和式可写为 `a ...


A000110       
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,
27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159,
5832742205057, 51724158235372, 474869816156751, 4506715738447323, 44152005855084346,
445958869294805289, 4638590332229999353, 49631246523618756274, 545717047936059989389, .............
\(\D\sum_{n=0}^{\infty}\frac{n^{0}}{n!\times e}=1\)
\(\D\sum_{n=0}^{\infty}\frac{n^{1}}{n!\times e}=1\)
\(\D\sum_{n=0}^{\infty}\frac{n^{2}}{n!\times e}=2\)
\(\D\sum_{n=0}^{\infty}\frac{n^{3}}{n!\times e}=5\)
\(\D\sum_{n=0}^{\infty}\frac{n^{4}}{n!\times e}=15\)
\(\D\sum_{n=0}^{\infty}\frac{n^{5}}{n!\times e}=52\)
\(\D\sum_{n=0}^{\infty}\frac{n^{6}}{n!\times e}=203\)
\(\D\sum_{n=0}^{\infty}\frac{n^{7}}{n!\times e}=877\)
\(\D\sum_{n=0}^{\infty}\frac{n^{8}}{n!\times e}=4140\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-30 10:07:27 | 显示全部楼层
王守恩 发表于 2018-7-3 16:29
有这样一串数: 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325,
  ...

A002522
2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226,
257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785,
842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601,
1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, .................

\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-0)!\times e}=2\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-1)!\times e}=5\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-2)!\times e}=10\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-3)!\times e}=17\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-4)!\times e}=26\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-5)!\times e}=37\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-6)!\times e}=50\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-7)!\times e}=65\)
\(\D\sum_{n=0}^{\infty}\frac{n^2}{(n-8)!\times e}=82\)
         

   
   
   
   
   

   



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-30 12:07:04 | 显示全部楼层
本帖最后由 王守恩 于 2019-1-30 13:54 编辑
王守恩 发表于 2019-1-30 10:07
A002522
2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226,
257, 290, 325, 362, 40 ...


A002720       
1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231,
3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106,
6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154,
1727194482044146637521, 44552237162692939114282, 1198605668577020653881647, ...............

\(\D\sum_{k=0}^{0}\frac{(0!)^2}{k!\ ((0-k)!)^2}=1\)
\(\D\sum_{k=0}^{1}\frac{(1!)^2}{k!\ ((1-k)!)^2}=2\)
\(\D\sum_{k=0}^{2}\frac{(2!)^2}{k!\ ((2-k)!)^2}=7\)
\(\D\sum_{k=0}^{3}\frac{(3!)^2}{k!\ ((3-k)!)^2}=34\)
\(\D\sum_{k=0}^{4}\frac{(4!)^2}{k!\ ((4-k)!)^2}=209\)
\(\D\sum_{k=0}^{5}\frac{(5!)^2}{k!\ ((5-k)!)^2}=1546\)
\(\D\sum_{k=0}^{6}\frac{(6!)^2}{k!\ ((6-k)!)^2}=13327\)

也可以这样:
\(\D\sum_{k=0}^{0}\frac{(0!)^2}{k!\ k!\ (0-k)!}=1\)
\(\D\sum_{k=0}^{1}\frac{(1!)^2}{k!\ k!\ (1-k)!}=2\)
\(\D\sum_{k=0}^{2}\frac{(2!)^2}{k!\ k!\ (2-k)!}=7\)
\(\D\sum_{k=0}^{3}\frac{(3!)^2}{k!\ k!\ (3-k)!}=34\)
\(\D\sum_{k=0}^{4}\frac{(4!)^2}{k!\ k!\ (4-k)!}=209\)
\(\D\sum_{k=0}^{5}\frac{(5!)^2}{k!\ k!\ (5-k)!}=1546\)
\(\D\sum_{k=0}^{6}\frac{(6!)^2}{k!\ k!\ (6-k)!}=13327\)

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-30 13:43:34 | 显示全部楼层
kastin 发表于 2018-12-27 15:28
设 `b_n` 满足 `b_n=b_{n-1}+b_{n-2}~(n\geqslant 3,~b_0=2,\,b_1=3,\,b_2=4)`,那么算式右边和式可写为 `a ...

A000262
1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141,
12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921,
26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441,
8281153039765859726341, 218456450997775993367443,6004647590528092507965393,..................

\(\D\sum_{k=0}^{0}\frac{0!\times 1!}{k!\ (0-k)!\ (k+1)!\ }=1\)
\(\D\sum_{k=0}^{1}\frac{1!\times 2!}{k!\ (1-k)!\ (k+1)!\ }=3\)
\(\D\sum_{k=0}^{2}\frac{2!\times 3!}{k!\ (2-k)!\ (k+1)!\ }=13\)
\(\D\sum_{k=0}^{3}\frac{3!\times 4!}{k!\ (3-k)!\ (k+1)!\ }=73\)
\(\D\sum_{k=0}^{4}\frac{4!\times 5!}{k!\ (4-k)!\ (k+1)!\ }=501\)
\(\D\sum_{k=0}^{5}\frac{5!\times 6!}{k!\ (5-k)!\ (k+1)!\ }=4051\)
\(\D\sum_{k=0}^{6}\frac{6!\times 7!}{k!\ (6-k)!\ (k+1)!\ }=37633\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-6-27 07:51 , Processed in 0.068446 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表