- 注册时间
- 2017-1-14
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 9630
- 在线时间
- 小时
|
楼主 |
发表于 2019-3-15 15:07:20
|
显示全部楼层
本帖最后由 王守恩 于 2019-3-15 19:05 编辑
谢谢 dlpg070!
我好奇您是怎么把这乱七八糟的A139369找出来的,有方法吗?
A139369 可以有通项公式!!! 大家可有现成资料?提供一下?
3, 4, 5, 5, 10, 6, 6, 17, 12, 9, 7, 26, 20, 28, 10, 8, 37, 30, 65, 30,
12, 9, 50, 42, 126, 68, 36, 17, 10, 65, 56, 217, 130, 80, 82, 18, 11,
82, 72, 344, 222, 150, 257, 84, 20, 12, 101, 90, 513, 350, 252, 626,
260, 90, 24, 13, 122, 110, 730, 520, 392, 1297, 630, 272, 108
A139369是按左下到右上排列,倒过来按右上到左下排列,
得到新的数字串也可以有通项公式!!!大家可有现成资料?提供一下?
3, 5, 4, 6, 10, 5, 9, 12, 17, 6, 10, 28, 20, 26, 7, 12, 30, 65, 30, 37,
8, 17, 36, 68, 126, 42, 50, 9, 18, 82, 80, 130, 217, 56, 65, 10, 20,
\(a(n)=m^u+m^v\)
\(m=\frac{1}{2}[\sqrt{2n}\ ]\cdot(1-[\sqrt{2n}])+1 + n\)
\(u=\big[\sqrt{[\sqrt{ 2( [\sqrt{2 n}]^2 + 1 - n)}]\cdot(1 - [\sqrt{2( [\sqrt{2 n}]^2 + 1 - n)}])+2([\sqrt{2n}]^2 + 1 - n)}\big]\)
\(v=\frac{1}{2} \big([\sqrt{ 2 ([\sqrt{2 n}]^2 + 1 - n)}]\cdot (1 - [\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)}]) + 2 ([\sqrt{2 n}]^2 + 1 - n)\big) \)
\(-\big [\sqrt{[\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)}]\cdot (1 - [\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)}]) + 2 ([\sqrt{2 n}]^2 + 1 - n)}\big] \)
\(-\frac{1}{2} \big[\sqrt{[\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)}]\cdot (1 - [\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)]}) +2 ([\sqrt{2 n}]^2 + 1 - n)} - 1\big]\)
\(\big[\sqrt{[\sqrt{ 2 ([\sqrt{2 n}]^2 + 1 - n)}]\cdot (1 - [\sqrt{2 ([\sqrt{2 n}]^2 + 1 - n)}]) + 2 ([\sqrt{2 n}]^2 + 1 - n)} - 2\big]\) |
|